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ABSTRACT

This paper deals with the stable walking of bipedats. The presented control algorithm enables a
biped to perform stable walking without using goecomputed trajectories. The algorithm merges
gait trajectory generation and control, and canused for global control, for local control along

an existing trajectory as well as for online computation of gait trajectories for stable walking. The
inputs for the algorithm are a few parameters sashvalking speed and stsize. The performance

of the algorithm is demonstrated by simulation.

1 INTRODUCTION

The challenge in movement control of biped rab to ensure overall stability or balance of the
system during task execution. Consideration of the overall stability of a biped, with mass properties
equivalent to those of a human, is necessary even for slow walking.

In most of the existing elaborated biped systemsg. [1, 2], the walking control is performed on

two levels: computation of the gait trajectories and local control along them. The overall stability or
balancing should be considered on both levels.

On the first level, the synergy method [3] and hats based on optimization [4] are often used.

In case of synergy methods, the trajectories for nebshe joints are generated e.g. from recorded
human movement, and the trajectories for the fewaiming joints are computed in relation to over-

all stability of the robot. Usually, the movements of the trunk in frontal and sagittal planes are
considered unknown. Computation of the unknovajectories requires the solution of a boundary
value problem, and can only be performeging iterative numerical methods.

The methods based on non-linear optimization pata the movements of the robot by minimizing

a cost function. This cost function specifies thev@ment properties which are central to the given
task, e.g. minimal time and/or minimal energynsumption. The dynamical equations and stability
conditions are incorporated in the optimization problem as equality and inequality constraints. Even
the solution for a simple model can be found onlymerically and requise high computational
effort.

The controllers on the second level generate precomputed trajectories in the actuators and balance
the biped in the small region of the nominal precomputed movement.

In this paper, a control algorithm which merges these two levels is presented. This algorithm does
not require any numerical iterative methadsd has minimal computational effort.

The presented control algorithm was develop@dtsteering an exoskeleton by the force imposed by
the human in it. Smooth force steeringguires a reaction time of approxm, which makes the

use of even fast iterative numerical computatiohstable gait problematic. The number of possible
human movements in the exoskeleton is vast anafidine precomputation for even a single robot is



problematic. Furthermore, byvtching from one precomputed trajectory to another, the movement
can become unstable because the distance between two trajectories could exceed the operation region
of the local controller.

2 SHORT DESCRIPTION OF THE CONTROL ALGORITHM

The biped robot is modeled as a chain of sevgidrbodies: both feet, lower legs, upper legs and

trunk, as shown in Fig. 1.

The dynamical equations were derived using Kane’s for-

malism [5], and have the following form:
M(q)w="F(g,w)+T 1)

trunk

whereq = (qs,...,06)" is the vector of generalized co-
ordinates, which are angles in ankles, knees, hip jointgPper leg
andw= (wy, ..., oog)T is the vector of corresponding gen-
eralized velocities. The matrix functidvl (q) takes into  jgyer leg
account the mass distribution, and the vector fundtionw)
describes the influence of both inertial forces and gravity:
The elements of the vectdr are generalized forces ap-
plied to the system. For the model considered, these are

the torques in the joints. The dot denotes the time deriva- _
tive in a Newtonian reference frame. Figure 1. The model of the biped
The kinematic equations for the model are obviously: "OPOt.

q=w (2)

The scheme of the control algorithm is shown in Fig. 2.
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Figure 2: Scheme of the algorithm.
Walking is specified by a few task parameters etihare the inputs of the control algorithm (left in
Fig. 2): step size, walking speed and desired height of the pelvis. From these task parameters, the
geometric gait parameters are calculated in blgedmetric parameters. For the model in Fig. 1



the following geometric gait parameters can be used: end position and velocity of the pelvis, trunk
orientation, end position and velocity of the swing foot and step duration. End means the end time
of each step — time point where the stance leg becomes the swing leg and vice versa. This block
serves to facilitate the usage of the algorithm and is described in sec. 5.

The blockinverse kinematics (accelerations) computes the acceleration vectoffrom the acceler-
ations of the geometric gait parameters as shown in Fig. 2. For that a system of linear equations
should be solved, which is obtained by double d#fgiation of the forward kinematics equations.
The solution can be performed symbolically therefthe formulas for calculation of the elements

of ware available.

For a moment we assume that the dotted blamiklinear ctrl has a transfer function equal to 1 and

W= w".

The blockrobot represents the real biped or its non-linear model.

The blockinverse dynamics computes the joint torquéls from the given acceleration vectar and

the actual system statg, w) using dynamical eq. (1). This k& linearizes and decouples the non-
linear system which describes the biped, so that the bimtld andinverse dynamicsare equivalent

to the six independent double integrators, one for each joint.

The blockforward kinematics computes the actual values for geometric gait parameters from the
actual system staie], w).

Due to the assumption that= w*, the shaded area in Fig. 2 can be considered as five independent
double integrators, which describe the behavioeach of the geometrical gait parameters. These
parameters are independsgrcontrolled by the blockstrl (...).

Until now, the control scheme looks similar to thedely used approach for decoupling, linearization
and control for non-linear mechamail systems, especially arm mpnlators (see e.g. [6]). The
application of the described scheme for globahtrol of stable walking of a biped involves the
following two issues:

e to produce a periodical gait the blocksl| (...) should force the geometrical parameters to
reach its end valueat the same time

¢ the overall stability of the robot should be ensured during walking

The main contribution of this study is the elaboration of these two problems.

As shown in Fig. 2, the first problem is solved by means of a controller, which is designed using the
well known results for state reachebality in lineas®ms in finite time. The control law for blocks
ctrl(...) is given in sec. 3.

For achieving overall stability, the concept of Zero Moment Point (ZMP) [7] is used. The overall
stability is achieved by modifying the acceleration vectan the blocknon-linear ctrl. This modi-
fication will be performed by projecting the vectoronto the plain, which is denoted by the authors
asZMP-plane. The projection operator requires thdwmn of a system of linear equations with

the dimension one less than the dimension of the vaotoilhis means that computations in the
block non-linear ctrl are not expensive and the method can be easily applied to models with more
dimensions. This block is described in sec. 4.

After setting the described task parameters tigerdthm produces a stable, periodical walking pat-
tern corresponding to these parameters, Whmuld be modified during the robot movement.

3 THE TIME DEPENDENT CONTROLLER FOR GEOMETRICAL PA-
RAMETERS

To produce a periodical gait, all of the blootsl(...) in Fig. 2 should force the geometrical parame-
ters to reach its end values at the same time. Due to linearization and decoupling of the system, each



of the geometrical parameters hlas behavior of a double integrator.
The computation of the inpuit) which quides the linear time invariant system from the actual state
Xp Into some stat&; at the given timé, can be performed as follows:

u(t) = BToT (t) (WT ()W (t)) W (t2) (x1 — D(t1)xo) 3)

whereW (t1) is the controllability grammian:

Wity = [ ot 0BOBT(H) (oY) (1)t

to

®(t) = L71{(sl — A)~1} is the transition matrixA the system matrix anBl the input matrix of the
linear system. After the substitution the integration varidabléth 1 =t —t; and using the property
of the transition matrixp~1(t) = ®(—t), the controllability grammiakV(t;) can be rewritten as:

0

w(an = [ o(-0BLBT (M) (@) (~udr @
wherelt =t; —tg is the remaining time to reach from the actual statey.
The derivation of the control law (3) can be found in each advanced control theory book, e.g. [8].
After inserting in (3) and (4) the system matrices of double integrater (0, 1; 0,0) andB =
(0, 1)Twith the state vectox = (x,0)T composed of positior and velocityu one obtains the time
dependent control law for each of the bloakd(...) in Fig. 2:

u(ae) = ay(ar) = 270 = 20+ 0 ®

In the vicinity of the end state; = (x1,01)"T At goes to 0 and eq. (5) can not be used. In this case,
a small positive double valut, can be used instead Af or the control law (5) can be replaced,
e.g. by a PID-controller. In the simulatiopsesented in sec. 6 the first approach vfithi, = 0.01

has been used.

4 MODIFICATION OF THE ACCELERATION VECTOR w
The stability condition for the movement in thagttal plane will be defined in this work as:
Xmin < Xzmp < Xmax (6)

whereXmin andXmax are two margins of the foot print angny is the position of ZMP. This means
that during the movement the ZMP remains within the foot print.
It could be shown (see e.qg. [7, 9]) that the expressionxfqs has the form:

6
Xzmp + 0o = _Zai(bi (7)
i=

wheready,...,0g are non-linear functions dependiog generalized coordinatesand velocities

w. At each moment, the acceleration of the systemwan be changed arbitrarily by application of
corresponding torquek in the joints (according to eq. (1)). Byontrast, the changes in velociti®s
correspond to actual acceleratipasd the changes in coordinatgsorrespond to actual velocities
(double integrator behavior). This allows the coefficiemgs. .., ag in eq. (7) at each moment to

be considered constants and the acceleratiovariables with arbitrary values. Therefore, for each
value ofxzmp €q. (7) describes a plane in the acceleration space at each moment. This plane is called



the ZMP-plane. Of course, the position and orientation of this plane are changing in time. This
ZMP-plane has a clear physical meagri choosing the actual acceleratianbelonging to it, we
guarantee that the system moves at this moment of time in such a way thatdbedinate of ZMP

will be equal toXzmp.

The blocknon-linear ctrl ensures the satisfaction of the stip condition (6) and is implemented
using the following algorithm:

1. calculate Xz, corresponding to w
2. i f(Xmp < Xmin O Xgmp > Xmax)
t hen
)_(imp:Xm!n qr X;mp:me
w* = projection(w)
el se
W'=w

The operatoprojection(x) in step 2 can be implemented in different ways. It is important that the
resulting acceleration vectar lies in the ZMP-plane which correspondsdgy, satisfying condition
(6). Three different definitions of this operator (see Fig. 3) were investigated.
For the sake of clarity in Fig. 3, only two of six dimen-
sions of the acceleration space are shown. In the first defg Draa A
inition the length of the origin vectapis changed in such . ZMP-plane
away that its tip lies in the ZMP-plane. The resulting vec=--..
tor is denoted a&;. In the second definition, the end of
the resulting vector, denoted as, is given by point B,
which is the crossing point of the perpendicular from the
end of the origin vectow (point A) to the ZMP-plane. In
the third definition, five coordinates of the origin vector
remain unchanged and only one is adjusted. The resulting
e e e saoan T gure . Thte enitons for cpre

I peraftor projection(x).
projection(x) leads to the best movement performance.
The implementation of each of these three opegatequires the solution of a corresponding system
of linear equations with dimension less than the dimension of the vextor
By active operatoprojection(x) the geometrical parameters dot behave like double integrators
and the periodical movement generated by blatksg...) is disturbed. The operatqrojection(x)
should try to redistribute this disturbance ol dimensions of the acceleration space, so that
each particular coordinate has only a small disturbance which can be corrected when the operator
projection(x) is not active.

5 COMPUTATION OF GEOMETRICAL GAIT PARAMETERS

The rules for computation of geometrical gait pasders (see Fig. 2) have an impact on the period
of time in which the operatoprojection(x) is active. Unfortunately, there is no formal way to
find camputation rules that minimize the active timepodjection(x). To find appropriate rules the
authors used the following approachhe transfer function of the bloakon-linear ctrl was setto 1

and the position of the ZMP was observed during the simulation of walking with different rules. In
this simulation it was assumed that the robotgloet rotate about the foot edge, so that the ZMP
could leave the foot print without the robot falling down. The rules have to be varied in order to
force the ZMP to remain within the foot print as long as possible.



Good results were achieved with the following rulgel visend positiony = stepsize/2, pelvisend
positiony = pelvisheight, pel visend vel ocityy = 1.5xwal kingspeed, trunkend orientation = 0.23rad
(statical equilibrium forpelvisy = 0, pelvis, = pelvisheight andxmp = 0, both feet are on the floor
side by side),swing foot end positiony, = stepsize, swing foot end position, = 0, swing footend
vel ocityy = 0 andswing f oot end vel ocityy = 0. All specifications referatthe reference frame shown
in Fig. 1,end means the end of the step.

6 SIMULATION RESULTS

2

15—

AV (L

x (m)

y (m)

a1

Figure 4. Resulting movement for walking with different parameters

To demonstrate the performancetioé presented control algorithm, the following computer simula-
tion experiment was performed: The biped was standing in some arbitrarily chosen initial state (the
center of mass (CM) was within a footprint, all generalized velocities were equal to 0). The biped
had to start walking with the following task parameters: step sizd mpwalking speed - @m/s

and pelvis height - @m. After walking forabout 5 the biped had to double the step size and the
walking speed. After walking with these new parameters for furtls¢h® step size was set to 0 and

the biped had to stop. The mass of upper and lower legs was sk &a6h; the mass of the trunk to
50kg (total mass 78g); the length of the upper and lower legs was set fmtand the length of the

trunk junk to Im. All body parts were modeled as solid eydiers with uniform mass distribution.

The diagram in Fig. 4 illustrates the resulting walking movement. The configurations where the
stance foot is changed as well as the start (Jightd the end (left) configurations are marked with
bold. Fig. 5-7 reveal the details of this movement. In each of these Fig., two intervals corresponding
to walking with different task parameters can be seen. Each interval starts with a settling process,
which lasts one step interval, after that the periodic change of the values can be seen in each Fig..
The coordinates in all Fig. are given rizle to the ankle of the stance foot (pofdin Fig. 1). At the

end of each step (in this example the step duration is equa) tihhé swing foot becomes the stance
foot and vice versa without double support phasg aithout ballistic flying. At the time the swing

foot touches the floor, its ablse velocity is equal to 0.

The trajectories for th&-coordinates of ZMP and Center of Mass (CM) are shown in Fig. 5. The
x-coordinate of the ZMP remains within the chosen range (within the foot gr@)05m; 0.2m]

during the whole movemenk & O is in pointO, see Fig. 1). After the biped has stopped, bwth
andw are zero, and the-coordinates of ZMP and CM should coincide. Exactly this can be seen in
Fig. 5 at the end of the movement after abous.11

The horizontal velocities of the pelvis and CM are shown in Fig. 6. After the settling process in each
interval, the average values of these velocities @qual and are in accordance with the specified
walking speeds.
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Figure 6: Horizontal velocities of the pelvisand CM
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Figure7: Torquesinjoints1,2,3 (seeFig. 1)

Fig. 7 shows the applied torques in the joints of the stance leg.

In this study walking without double support phase is considered. After the swing foot reaches the
floor it becomes immediately the stance foot and vice versa. This case is more complicated for
balancing than the case whemauble support phase is present.ridg the double support phase,



the range allowed for ZMP is bigger (convex hat two foot prints instead of one) and the biped

can endure a larger acceleration to correct its movement.

In several published studies the control of the ZMP position is used to achieve overall stability of
a biped. To the authors’ opinion, this approach hasutbacks due to the following considerations:
Prescribing the trajectory of the ZMP position reduces the number of independent degrees of free-
dom of the robot. Since the trajectory of the ZBsition does not directly correspond to the tasks

of the robot, other task relevant value, e.g. trunktation or pelvis velocity, can not be controlled
independently. Furthermore, tE&P position linearly depends on the accelerations of the general-
ized coordinates, which in turn, depend on the applied torques. This means that the ZMP position
can be changed arbitrary and anyiloy applying appmpriate torques.

7 CONCLUSION

It was shown that the trajectory generation &able walking of a biped and the control along
these trajectories could be merged into a sindgg@rthm in form of a feedback controller. The
performance of the algorithm was demonstrated byuation. As mentioned above, the application

field for the algorithm ranges from global conitto online trajectories computation.

The authors were surprised that stable walking with changeable parameters could be achieved using
a feedback controller without any computgensive “intelligent” calculations.

The presented version of the algorithm does not i@nghe limitation of the torques in actuators,
which is very important for practical applitans. The authors are working on this problem.
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