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ABSTRACT

This paper deals with the stable walking of biped robots. The presented control algorithm enables a
biped to perform stable walking without using anyprecomputed trajectories. The algorithm merges
gait trajectory generation and control, and can beused for global control, for local control along
an existing trajectory as well as for online computation of gait trajectories for stable walking. The
inputs for the algorithm are a few parameters suchas walking speed and step size. The performance
of the algorithm is demonstrated by simulation.

1 INTRODUCTION

The challenge in movement control of biped robots is to ensure overall stability or balance of the
system during task execution. Consideration of the overall stability of a biped, with mass properties
equivalent to those of a human, is necessary even for slow walking.
In most of the existing elaborated biped systems, e.g. [1, 2], the walking control is performed on
two levels: computation of the gait trajectories and local control along them. The overall stability or
balancing should be considered on both levels.
On the first level, the synergy method [3] and methods based on optimization [4] are often used.
In case of synergy methods, the trajectories for mostof the joints are generated e.g. from recorded
human movement, and the trajectories for the few remaining joints are computed in relation to over-
all stability of the robot. Usually, the movements of the trunk in frontal and sagittal planes are
considered unknown. Computation of the unknown trajectories requires the solution of a boundary
value problem, and can only be performedusing iterative numerical methods.
The methods based on non-linear optimization compute the movements of the robot by minimizing
a cost function. This cost function specifies the movement properties which are central to the given
task, e.g. minimal time and/or minimal energy consumption. The dynamical equations and stability
conditions are incorporated in the optimization problem as equality and inequality constraints. Even
the solution for a simple model can be found onlynumerically and requires high computational
effort.
The controllers on the second level generate precomputed trajectories in the actuators and balance
the biped in the small region of the nominal precomputed movement.
In this paper, a control algorithm which merges these two levels is presented. This algorithm does
not require any numerical iterative methodsand has minimal computational effort.
The presented control algorithm was developed for steering an exoskeleton by the force imposed by
the human in it. Smooth force steering requires a reaction time of approx. 1ms, which makes the
use of even fast iterative numerical computationsof stable gait problematic. The number of possible
human movements in the exoskeleton is vast and anoffline precomputation for even a single robot is



problematic. Furthermore, by switching from one precomputed trajectory to another, the movement
can become unstable because the distance between two trajectories could exceed the operation region
of the local controller.

2 SHORT DESCRIPTION OF THE CONTROL ALGORITHM

The biped robot is modeled as a chain of seven rigid bodies: both feet, lower legs, upper legs and
trunk, as shown in Fig. 1.
The dynamical equations were derived using Kane’s for-
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Figure 1: The model of the biped
robot.

malism [5], and have the following form:

M(q)ω̇= f(q,ω)+T (1)

whereq = (q1, . . . ,q6)
T is the vector of generalized co-

ordinates, which are angles in ankles, knees, hip joints,
andω= (ω1, . . . ,ω6)

T is the vector of corresponding gen-
eralized velocities. The matrix functionM(q) takes into
account the mass distribution, and the vector functionf(q,ω)
describes the influence of both inertial forces and gravity.
The elements of the vectorT are generalized forces ap-
plied to the system. For the model considered, these are
the torques in the joints. The dot denotes the time deriva-
tive in a Newtonian reference frame.
The kinematic equations for the model are obviously:

q̇ = ω (2)

The scheme of the control algorithm is shown in Fig. 2.
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Figure 2: Scheme of the algorithm.
Walking is specified by a few task parameters which are the inputs of the control algorithm (left in
Fig. 2): step size, walking speed and desired height of the pelvis. From these task parameters, the
geometric gait parameters are calculated in blockgeometric parameters. For the model in Fig. 1



the following geometric gait parameters can be used: end position and velocity of the pelvis, trunk
orientation, end position and velocity of the swing foot and step duration. End means the end time
of each step – time point where the stance leg becomes the swing leg and vice versa. This block
serves to facilitate the usage of the algorithm and is described in sec. 5.
The blockinverse kinematics (accelerations) computes the acceleration vectorω̇ from the acceler-
ations of the geometric gait parameters as shown in Fig. 2. For that a system of linear equations
should be solved, which is obtained by double differentiation of the forward kinematics equations.
The solution can be performed symbolically therefore the formulas for calculation of the elements
of ω̇ are available.
For a moment we assume that the dotted blocknon-linear ctrl has a transfer function equal to 1 and
ω̇= ω̇∗.
The blockrobot represents the real biped or its non-linear model.
The blockinverse dynamics computes the joint torquesT from the given acceleration vectorω̇∗ and
the actual system state(q,ω) using dynamical eq. (1). This block linearizes and decouples the non-
linear system which describes the biped, so that the blocksrobot andinverse dynamics are equivalent
to the six independent double integrators, one for each joint.
The blockforward kinematics computes the actual values for geometric gait parameters from the
actual system state(q,ω).
Due to the assumption thatω̇= ω̇∗, the shaded area in Fig. 2 can be considered as five independent
double integrators, which describe the behavior of each of the geometrical gait parameters. These
parameters are independently controlled by the blocksctrl (...).
Until now, the control scheme looks similar to the widely used approach for decoupling, linearization
and control for non-linear mechanical systems, especially arm manipulators (see e.g. [6]). The
application of the described scheme for global control of stable walking of a biped involves the
following two issues:

• to produce a periodical gait the blocksctrl (...) should force the geometrical parameters to
reach its end valuesat the same time

• the overall stability of the robot should be ensured during walking

The main contribution of this study is the elaboration of these two problems.
As shown in Fig. 2, the first problem is solved by means of a controller, which is designed using the
well known results for state reachebality in linear systems in finite time. The control law for blocks
ctrl(...) is given in sec. 3.
For achieving overall stability, the concept of Zero Moment Point (ZMP) [7] is used. The overall
stability is achieved by modifying the acceleration vectorω̇ in the blocknon-linear ctrl. This modi-
fication will be performed by projecting the vectorω̇onto the plain, which is denoted by the authors
asZMP-plane. The projection operator requires the solution of a system of linear equations with
the dimension one less than the dimension of the vectorω. This means that computations in the
block non-linear ctrl are not expensive and the method can be easily applied to models with more
dimensions. This block is described in sec. 4.
After setting the described task parameters the algorithm produces a stable, periodical walking pat-
tern corresponding to these parameters, which could be modified during the robot movement.

3 THE TIME DEPENDENT CONTROLLER FOR GEOMETRICAL PA-
RAMETERS

To produce a periodical gait, all of the blocksctrl(...) in Fig. 2 should force the geometrical parame-
ters to reach its end values at the same time. Due to linearization and decoupling of the system, each



of the geometrical parameters has the behavior of a double integrator.
The computation of the inputu(t) which quides the linear time invariant system from the actual state
x0 into some statex1 at the given timet1 can be performed as follows:

u(t) = BT ΦT (t)
(
WT (t1)W(t1)

)−1
WT (t1)(x1−Φ(t1)x0) (3)

whereW(t1) is the controllability grammian:

W(t1) =
∫ t1

t0
Φ−1(t)B(t)BT(t)

(
Φ−1)T

(t)dt

Φ(t) = L−1
{
(sI−A)−1

}
is the transition matrix,A the system matrix andB the input matrix of the

linear system. After the substitution the integration variablet with τ = t − t1 and using the property
of the transition matrixΦ−1(t) = Φ(−t), the controllability grammianW(t1) can be rewritten as:

W(∆t) =
∫ 0

−∆t
Φ(−τ)B(τ)BT (τ)(Φ)T (−τ)dτ (4)

where∆t = t1− t0 is the remaining time to reachx1 from the actual statex0.
The derivation of the control law (3) can be found in each advanced control theory book, e.g. [8].
After inserting in (3) and (4) the system matrices of double integratorA = (0, 1; 0, 0) and B =
(0, 1)T with the state vectorx = (x,υ)T composed of positionx and velocityυ one obtains the time
dependent control law for each of the blocksctrl(...) in Fig. 2:

u(∆t) = ai(∆t) =
6(x1− x0)−2∆t(2υ0+υ1)

∆t2 (5)

In the vicinity of the end statex1 = (x1,υ1)T ∆t goes to 0 and eq. (5) can not be used. In this case,
a small positive double value∆tmin can be used instead of∆t or the control law (5) can be replaced,
e.g. by a PID-controller. In the simulationspresented in sec. 6 the first approach with∆tmin = 0.01
has been used.

4 MODIFICATION OF THE ACCELERATION VECTOR ω̇

The stability condition for the movement in the sagittal plane will be defined in this work as:

xmin ≤ xzmp ≤ xmax (6)

wherexmin andxmax are two margins of the foot print andxzmp is the position of ZMP. This means
that during the movement the ZMP remains within the foot print.
It could be shown (see e.g. [7, 9]) that the expression forxzmp has the form:

xzmp +α0 =
6

∑
i=1

αiω̇i (7)

whereα0, . . . ,α6 are non-linear functions dependingon generalized coordinatesq and velocities
ω. At each moment, the acceleration of the systemω̇ can be changed arbitrarily by application of
corresponding torquesT in the joints (according to eq. (1)). Bycontrast, the changes in velocitiesω
correspond to actual accelerations, and the changes in coordinatesq correspond to actual velocities
(double integrator behavior). This allows the coefficientsα0, . . . ,α6 in eq. (7) at each moment to
be considered constants and the accelerationsω̇ variables with arbitrary values. Therefore, for each
value ofxzmp eq. (7) describes a plane in the acceleration space at each moment. This plane is called



the ZMP-plane. Of course, the position and orientation of this plane are changing in time. This
ZMP-plane has a clear physical meaning: choosing the actual accelerationω̇ belonging to it, we
guarantee that the system moves at this moment of time in such a way that thex-coordinate of ZMP
will be equal toxzmp.
The blocknon-linear ctrl ensures the satisfaction of the stability condition (6) and is implemented
using the following algorithm:

1. calculate x∗zmp, corresponding to ω̇
2. if(x∗zmp < xmin or x∗zmp > xmax)

then
x∗zmp = xmin or x∗zmp = xmax

ω̇∗ = pro jection(ω̇)
else

ω̇∗ = ω̇

The operatorpro jection(∗) in step 2 can be implemented in different ways. It is important that the
resulting acceleration vectorω̇∗ lies in the ZMP-plane which corresponds toxzmp satisfying condition
(6). Three different definitions of this operator (see Fig. 3) were investigated.
For the sake of clarity in Fig. 3, only two of six dimen-
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Figure 3: Three definitions for opera-
tor pro jection(∗).

sions of the acceleration space are shown. In the first def-
inition the length of the origin vectoṙω is changed in such
a way that its tip lies in the ZMP-plane. The resulting vec-
tor is denoted aṡω∗

1. In the second definition, the end of
the resulting vector, denoted asω̇∗

2, is given by point B,
which is the crossing point of the perpendicular from the
end of the origin vectoṙω (point A) to the ZMP-plane. In
the third definition, five coordinates of the origin vectorω̇
remain unchanged and only one is adjusted. The resulting
vector is denoted aṡω∗

3. The simulation of different move-
ments has shown that the second definition of the operator
pro jection(∗) leads to the best movement performance.
The implementation of each of these three operators requires the solution of a corresponding system
of linear equations with dimension less than the dimension of the vectorω.
By active operatorpro jection(∗) the geometrical parameters donot behave like double integrators
and the periodical movement generated by blocksctrl(...) is disturbed. The operatorpro jection(∗)
should try to redistribute this disturbance over all dimensions of the acceleration space, so that
each particular coordinate has only a small disturbance which can be corrected when the operator
pro jection(∗) is not active.

5 COMPUTATION OF GEOMETRICAL GAIT PARAMETERS

The rules for computation of geometrical gait parameters (see Fig. 2) have an impact on the period
of time in which the operatorpro jection(∗) is active. Unfortunately, there is no formal way to
find camputation rules that minimize the active time ofpro jection(∗). To find appropriate rules the
authors used the following approach: The transfer function of the blocknon-linear ctrl was set to 1
and the position of the ZMP was observed during the simulation of walking with different rules. In
this simulation it was assumed that the robot does not rotate about the foot edge, so that the ZMP
could leave the foot print without the robot falling down. The rules have to be varied in order to
force the ZMP to remain within the foot print as long as possible.



Good results were achieved with the following rules:pelvisend positionx = stepsize/2, pelvisend
positiony = pelvisheight, pelvisend velocityx = 1.5∗walkingspeed, trunk end orientation = 0.23rad
(statical equilibrium forpelvisx = 0, pelvisy = pelvisheight andxzmp = 0, both feet are on the floor
side by side),swing f oot end positionx = stepsize, swing f oot end positiony = 0, swing f oot end
velocityx = 0 andswing f oot end velocityy = 0. All specifications refer to the reference frame shown
in Fig. 1,end means the end of the step.

6 SIMULATION RESULTS
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Figure 4: Resulting movement for walking with different parameters

To demonstrate the performance ofthe presented control algorithm, the following computer simula-
tion experiment was performed: The biped was standing in some arbitrarily chosen initial state (the
center of mass (CM) was within a footprint, all generalized velocities were equal to 0). The biped
had to start walking with the following task parameters: step size - 0.4m, walking speed - 0.4m/s
and pelvis height - 0.9m. After walking forabout 5s the biped had to double the step size and the
walking speed. After walking with these new parameters for further 5s the step size was set to 0 and
the biped had to stop. The mass of upper and lower legs was set to 5kg each; the mass of the trunk to
50kg (total mass 70kg); the length of the upper and lower legs was set to 0.5m and the length of the
trunk junk to 1m. All body parts were modeled as solid cylinders with uniform mass distribution.
The diagram in Fig. 4 illustrates the resulting walking movement. The configurations where the
stance foot is changed as well as the start (right) and the end (left) configurations are marked with
bold. Fig. 5-7 reveal the details of this movement. In each of these Fig., two intervals corresponding
to walking with different task parameters can be seen. Each interval starts with a settling process,
which lasts one step interval, after that the periodic change of the values can be seen in each Fig..
The coordinates in all Fig. are given relative to the ankle of the stance foot (pointO in Fig. 1). At the
end of each step (in this example the step duration is equal to 1s) the swing foot becomes the stance
foot and vice versa without double support phase and without ballistic flying. At the time the swing
foot touches the floor, its absolute velocity is equal to 0.
The trajectories for thex-coordinates of ZMP and Center of Mass (CM) are shown in Fig. 5. The
x-coordinate of the ZMP remains within the chosen range (within the foot print)[−0.05m; 0.2m]
during the whole movement (x = 0 is in pointO, see Fig. 1). After the biped has stopped, bothω
andω̇ are zero, and thex-coordinates of ZMP and CM should coincide. Exactly this can be seen in
Fig. 5 at the end of the movement after about 11s.
The horizontal velocities of the pelvis and CM are shown in Fig. 6. After the settling process in each
interval, the average values of these velocities are equal and are in accordance with the specified
walking speeds.
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Figure 5: Trajectories for ZMP and CM
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Figure 6: Horizontal velocities of the pelvis and CM
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Figure 7: Torques in joints 1,2,3 (see Fig. 1)

Fig. 7 shows the applied torques in the joints of the stance leg.
In this study walking without double support phase is considered. After the swing foot reaches the
floor it becomes immediately the stance foot and vice versa. This case is more complicated for
balancing than the case when adouble support phase is present. During the double support phase,



the range allowed for ZMP is bigger (convex hull of two foot prints instead of one) and the biped
can endure a larger acceleration to correct its movement.
In several published studies the control of the ZMP position is used to achieve overall stability of
a biped. To the authors’ opinion, this approach has drawbacks due to the following considerations:
Prescribing the trajectory of the ZMP position reduces the number of independent degrees of free-
dom of the robot. Since the trajectory of the ZMPposition does not directly correspond to the tasks
of the robot, other task relevant value, e.g. trunk orientation or pelvis velocity, can not be controlled
independently. Furthermore, theZMP position linearly depends on the accelerations of the general-
ized coordinates, which in turn, depend on the applied torques. This means that the ZMP position
can be changed arbitrary and any time by applying appropriate torques.

7 CONCLUSION

It was shown that the trajectory generation forstable walking of a biped and the control along
these trajectories could be merged into a single algorithm in form of a feedback controller. The
performance of the algorithm was demonstrated by simulation. As mentioned above, the application
field for the algorithm ranges from global control to online trajectories computation.
The authors were surprised that stable walking with changeable parameters could be achieved using
a feedback controller without any compute-intensive “intelligent” calculations.
The presented version of the algorithm does not consider the limitation of the torques in actuators,
which is very important for practical applications. The authors are working on this problem.
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