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Abstract— The presented algorithm enables a biped to per-
form a stable movement to a defined goal without using any
precomputed trajectories. The algorithm merges the trajectory
generation and the control along it, and can be used for global
control, for local control along an existing trajectory, as well as
for online computation of trajectories for stable movement. The
algorithm is based on a decoupling of the non-linear model and
changing the steering torques to account for both the overall
stability of the biped and for achieving the goal. The algorithm
is applied to the model of a biped moving in sagittal plane. By
specifying the goal as an arbitrary pelvis position the biped can
perform movements such as sitting down or standing up. The
performance of the algorithm is demonstrated in a simulation.

simple model can be found only numerically and requires high
computational effort.

The controllers on the second level reproduce precomputed
trajectories in the actuators édubalance the biped in the small
region of the nominal precomputed movement.

In this paper, an algorithm which merges these two levels is
presented. It can be used in three ways: as a global controller
which can stably steer the biped to the arbitrary goal in the
reachable work space; as local controller with a large operation
range; and as an algorithm for the online computation of
trajectories of balanced moweent. In this paper, only the
movements without changing a stance foot are considered.

The problem, considered in this paper is similar to the
problem of postural adjustment of bipeds, s. e.g. [5].

The presented algorithm was developed for steering an
exoskeleton by the force imposed by the human in it. In

this application the robot must be able to perform movements
which are similar to those of the human, which could range
. . . . widely. The number of possible movements here is vast and an
Consideration of the overall stability or the balancing of Bifline precomputation for even a single robot is problematic.

biped, Wh'Ph has the mass prope_rt|es equivalent to those rthermore, by switching from one precomputed trajectory
a human, is necessary even for simple and slow movemeﬁ)ts

. ; _ . . another, the movement can become unstable because the
during the task execution. Otherw|se the p|ped \.N'” rotate OVgfsiance between two trajectories could exceed the operation
the foot edge and collapse even if the trajectories in actuat%%ion of the local controller.
do not deviate from the nominal ones.

In most of the existing elaborated biped systems, e.g. [1],
[2], the movement control is divided in two levels: computa-
tion of the trajectories for a given task, and local control alorfy Model of the biped Robot

them. The overall stability or balancing should be consideredThe biped robot is modelled as a chain of four rigid bodies:
on both levels. foot, shank, thigh and trunk, as shown in Fig. 1. The dynamical

On the first level, the synergy method [3] and methods based
on optimization [4] are often used.

In case of synergy methods the trajectories for most of the
joints are generated e.g. frorecorded human movements,
and the trajectories for the few remaining joints are computed
in relation to overall stability of the robot. Usually the move-
ments of the trunk in frontal and sagittal planes are considered
unknown. Computation of the unknown trajectories requires
a solution of the boundary value problem, and can only be
performed using iterative numerical methods.

The methods based on non-linear optimization compute the
movements of the robot by minimizing a cost function. This
cost function specifies the movement properties which are
central to the given task, e.g. minimal time and/or minimalgyations were derived using Kane's formalism [6], and have
energy consumptions. The dyn&al equations and stability the following form:
conditions are incorporated in the optimization problem as
equality and inequality constraints. Even the solution for a

I. INTRODUCTION

Il. PROBLEM FORMULATION

Fig. 1. The model of the biped robot.

M(qw=f(quw)+T 1)



whereq = (ql,QQ,q?,)T is the vector of generalized coordi-wherez.,,, is the distance between the action lines of these
nates, which are angles in ankle, knee, hip joints, ane- forces.
(wl,WQ,w;g)T is the vector of the corresponding generalized If the force couple formed by, andF,. cancels the torque
velocities. The matrix functioM(q) takes into account the A/, the foot does not rotate around the edge. In this case, the
mass distribution and the vector functidriq,w) describes ZMP lies within the foot print. If the torque generated by force
the influence of both, the inertial forces and the gravity. Theuple F,, and F,. cannot compensate for the torqié,, the
elements of the vectdF are generalized forces applied to théoot begins to rotate around its edge. In this case, according
system. For the model considered, these are the torquegarefinition 1, ZMP leaves the region given by the foot print,
the joints. The dot denotes the time derivate in a Newtoniaee Fig. 2 (c).
reference frame. The rotation around the edge of the foot does not necessarily
The kinematical equations for the model are obviously: mean that the biped is going to collapse. Theoretically this
. rotation could still be controlled by means of inertial forces
a=« @) generated by acceleratedowements of the body parts, or

The proposed control algorithm will be described using thdoPped by recon_fi_guration of the I_<inematica| structure of the
model shown in Fig. 1. This means that only the movements$Stém, €.g. additional support with the other foot. But the
the sagittal plane of the robak(y-plane) will be considered. question is whether such a movement has any advantages.
As will be explained in sec. Ill, the algorithm can be eas“;ntumvely, it is clear that control of the system during rotation

extended for more complicated 3D models. around the edge of the foot requires more effort. It should also
be mentioned here that it is not obvious in which manner the
B. Sability Condition human does in fact move. Even in case of running, during the

For the formulation of the ability condition, the concept of Single support phase the 'ZMP could be in- or outside of the
the Zero Moment Point (ZMP) [7], [8] is used. The originafo_Ot print. To the authors’ knowledge this question remains
definition of the ZMP has been slightly modified, so as tfill open. _ .
incorporate the definition of the imaginary ZMP [7]: In this work the stable movement will be defined as follows:

Definition 1: The ZMP is an imaginary point where the Definition 2: The movement of the biped will be called
resulting ground reaction forcgould be applied, so that the Stable if the ZMP lies within the foot print. _
resulting torque imposed on the foot becomes zero. The stability condition for the wvement in the sagittal plane
This definition coincides with the definition of the foot rotatiorf@n be written therefore as:
indicator (FRI) introduced in [9]. In the authors’ opinion the
above-mentioned modification of the ZMP definition does not
justify the coining a new term for a concept which has beenwherez,,,;,, andz,,.. are two margins of the foot print and
discussed in relevant literature for over 30 years (for detailggmp is given by:
discussion of the concept itself, see [7] and [9]). M,

The ZMP-concept and overadtability condition are illus- Lzmp = _F_y
trated in Fig. 2. The forces which are exerted on the foot are

Tmin S Lzmp S Tmax (3)

(4)

It is worth mentioning that the violation of the movement

M M Wi stability condition (3) could be caused by both a large torque
. Y . ¥ 1\ . ¥ 1 M, (e.g. the center of mass is moving too fast or is displaced
“Fy p 4, F v F, too far forwards/backwards), and a small forEg (e.g. the
‘T ! : 1 /— ------ 1 center of mass is moving wittoo high acceleration down-
TITTrret = ward).
Xpp |O X O
P (© [1l. CONTROL ALGORITHM FOR STABLE MOVEMENT

(a) (b)
Fig. 2. ZMP concept and overall stability of the robot.

A. The Idea

shown in Fig. 2 (a). It is assumed that the foot does not moveThe scheme of the control algorithm is shown in Fig. 3. The
relatively to the floor. The influence from the side of the robgnovement goal is specified asy coordinates of a reference
is replaced with two forced’,, F,, and with the torque)/,. Point, which can be chosen arbitrarily. In this study, the
From the ground, the foot experiences a pressure distributi@lvis was taken as a reference point (see Fig. 1). The block
p and sheer friction force distributiorf,. In most practical kinematical transformation computes the joint coordinates
situations, F, and f, can be disregarded. The distributedvhich correspond to the specified position of the reference
pressure is always applied to the foot sole in one directi@®int. For the model in Fig. 1, this position is uniquely defined
(the sole does not stick to the ground) and can be replad®d the anglesq; and ¢;. To define the angles — trunk
with a single resulting forcé,. applying to some point within orientation — the equation for the position of the center of
the foot print, s. Fig.2 (b). The forceB, and F, are equal mass (CM) is used:

and constitute a force couple with a torque equat i, F, Zem = 9(q) )



(x,») integrators. This modification is performed by projecting the

¢ e vectorw onto two planes, which are denoted by the authors
kinematical as theZMP- and CM-plane. The notions of these two planes
transformation are presented below.
Qo After inserting the explicit formulas foF,, and/,, eq. (4)
(JD can be rewritten as follows:
ﬁ—ly Tomp + Q0 = Q1w1 + Qaws + a3ws (7)
ctrl ctrl ctrl whereay, ..., as are non-linear functions depending on gen-
al a2 @ eralized coordinateg; and velocitiesw. At each moment,
I the acceleration of the systedn can be changed arbitrarily
(oY T — - applying corresponding torquéB in the joints (according to
§ non-linear ﬂ» inverse _T_ obot 9.0 eg. (1)). By contrast, the changes in velocitiescorrespond
poerd dynamics to actual accelerations, anthe changes in coordinates
y f ' T correspond to actual velocitiedduble integrator behaviour).
This allows the coefficientsy,..., a3 in eq. (7) at each

moment to be considered cdasts and the acceleratiods
variables with arbitrary valie Therefore, for each value of
wherez.,, is a z-coordinate of the CM ang(x) is a non- Zzmp €d. (7) describes a plane in the acceleration space at
linear function inq. If .., is specified, the trunk orientation€ach moment. This plane is called tgIP-plane. Of course,
¢s can be easily computed from eq. (5). It is reasonable to 8@ position and orientation of this plane are changing in time.

Fig. 3. Scheme of the algorithm.

Tem in the middle of the range, Specified fmgmp: This ZMP-pIane. has a Clea.r phyS?Cal meaning: ChOOSing the
actual acceleratiod> belonging to it, we guarantee that the
Tem = (Tmin + Tmaz) /2 (6) system moves at this moment of time in such a way that the

If the dotted blocknon-linear ctrl has a transfer function #-coordinate of ZMP will be equal t@,. _
equal to1 which means thats = &*, the control scheme Similar consideration can be given for thecoordinate of

becomes similar to the widely used approach for decouplir@,\/" given by eq. (5). After dual differentiation of this equation

linearization and control for non-linear mechanical system&€ get the formula for the acceleration,, of zcp,:

especially arm manipulators (see e.g. [;O]). . ' Qem = Brun + Bow + Paiis (8)
The blockrobot represents the real biped or its non-linear . . .
model. wherepg, ..., 3 are non-linear functions i andw. Due to

the same argumentation as in the case of the ZMP-plane, at

The blockinverse dynamics computes the joint torque® | .
from the given acceleration vectdr* and the actual system 82ch momentand for each giver,, eq. (8) describes a plane

state(q, w) using dynamical eq. (1). This block linearizes anlf! the acceleration spac#his plane is called th€M-plane.
decouples the non-linear system which describes the biped in: by choosing the actual acceleration of the syséem
that blocksrobot and inverse dynamics are equivalent to the T0mM the CM-plane, the biped is forced to move in the manner,
three independent double integors. The movement of eachtNatem r']_s char;]gmg with the agcelehr_at;]onhiqual(ggn. .

of these double integrators could be independently controllecli\-/ll_0 ac I|eve the .n;;)vemegt hy whic d't COO; Ir?at;lv(IDP

in different ways, e.g. with a PD or PID controller. This threé: acce grates Withe., and thez-coordinate o t N
controllers are denoted in Fig. 3 a8l qi, ctrl gz, ctrlgs. remains simultaneously equal 19,,,,,, the acceleration vector

The application of the described scheme for global contr‘fb’l shogld belong to the line in accelt_aration_ space constituted
of a biped requires accoungnfor stability condition (3). PY the intersection of two planes, defined with eq. (7) and (8).
The incorporation of this stdliiy condition into the control This line will be qenoted aé.:M—Z.MP—Il.ne:
algorithm is the main contribution of this study. Accountin% The blocknon-linear ctrl in Fig. 3 is implemented as an
for the stability condition (3) Wl be achieved by modifying Igonthm,.wh!ch changes the original acceleratlo.n vector
the accelaration vectods in the block non-linear ctrl. As DY Projecting it onto the CM-plane and CM-ZMP-line:
shown in sec. IlI-B, this modification requires the solution of ~ 1- dem = ka (wem — w!) + ko (Vem — vegieet)

a system of linear equations with the dimension one less than 2.w* = PmJethn.Cprlane(w)
the dimension of the vectas. This means that computations ~ 3- calculater-coordinate of ZMPzZ,,,,,

in the blocknon-linear ctrl are not expensive and the method corresponding tao™
can be easily applied to models with more dimensions. 4. 1f(2 20y < Tmin OF 225 > Tmac)
. xzmp = Tpnin OF xzmp = Tmaz
B. The Control Algorithm W* = projectionc - znp—tine (@)
As mentioned in the previous section, the novelty of the end if

proposed algorithm is the modification of the acceleratidn step 1, the acceleratioa.,, is calculated as an output
vectorw obtained initially as anniput signal for three double of the PD controller which steers the actuatoordinate of



CM gectual to the desired positiom.,,, given by eq. (6), C. The Smulation Results
and at the desired velocity,,,, which is equal to0 in the
presented examples?<tu@! is the actual velocity oft.,,, k.
and k,, are coefficients of the PD controller. In step 2, th
initial acceleration vectow is projected onto the CM-plane
described by eq. (8). The resulting acceleration vectdr

ensures that?ct“e! moves witha.,,, as computed in step 1. In

The following parameters for the biped model are used in
the simulation: the mass of the thigh and shank was sektp
%ach; the mass of the trunk #0 kg; the length of the shank
"and thigh was set t0.5m and the length of the trunk junk

to 1 m. All body parts were modelled as solid cylinders with
cm
step 3, the new-coordinate of ZMPz* . which corresponds uniform mass distribution. It was assumed that the distance

zmp? > between the ankle joint in the foot and the floor is negligible

to thew™ from step 2, is calculated with eq. (4). After that, Ny d that there is no sliopage between the foot and the floor
step 4, the stability conditior8] is checked. If this condition In bIOCkSctrqu ctrl'(ip C?m 4 (see sec. III-A and Fig. 3) '
1, 3 K . - .

is violated,z?%,.. has to be set to the margin value which WaSh  ontrollers with coefficients. — 100 and k.. — 20 were
q w

. zmp ; . . . .
violated. After settingz the CM-ZMP-line is uniquely used. The coefficients, and k, in step 1 of the algorithm
in sec. llI-B were set t®00 and28. In all PD-controllers the

zmp?
defined and the initial accpeleration vectbrcan be projected
ie li H 7 ual
?onxgcgiuntiel\lszﬁ{g\]/?;the last prOjgctl_on gompeISatE@ g]ampingg was set equal ta, therefore the coefficients satisfy
y as the projection in step 2, due to tth% following relation:

fact that the CM-ZMP-line lies in the CM-plane. Additionally, '
the projection in step 4 ensures the satisfaction of stability o %m
condition (3). ’ B

The operatorprojection,(x) in steps 2 and 4 can be These coefficients have an impact on the duration of the
implemented in different ways, important is that the resultingjovement and on the required maximal torques. The stability
acceleration vectab* lies on the corresponding plane or lineof the movement in not affected by the values of these
Three different definitions of this operator (see Fig. 4) wereefficients in a wide range.
investigated. For the sake of clarity in Fig. 4 only two of The computation in the control loop runs Bk Hz. MAT-
LAB/SIMULINK was used as simulation environment.

The biped had to perform deep sitting down from initial

d)i o
" " A peIViS pOSitionxpelvis = 0m, Ypelvis = 1.0m, q3 = 0 tothe
Y CM-plane 0} end positionzciyis = —0.35 M, Ypervis = 0.4m. After that,
.................. the standing up to the initial pelvis position was performed.
e B ’/’
®, (1); ~~~~~~~~~ =N 2 P
"""" 18 18}
0, H ‘d)i 16 161

14 - 14

Fig. 4. Three definitions for operatgtrojection. (x). 2 taf

1 R 1ir

three dimensions of the acced¢ipn space are shown. In the’® 081
first definition the length of the origin vectab is changed ©o¢ N 0.6
in such a way that its tip lies in the CM-plane. The resultinos » » 04f
vector is denoted agy. In the second definition, the endo. 02f
of the resulting vector, denoted &s;, is given by point B, , ‘ ; 0

0.5 0 -0.5 1 0.5 0 -0.5

which is the crossing point of the perpendicular from the
end of origin vectorw (point A) to the CM-plane. In the Fig. 5. Resulting movement for sitting down (left) and standing up (right).
third definition, in case of projection onto the CM-plane two

coordinates of the origin vecto® remain unchanged and The diagrams in Fig. 5 illustrate the resulting movement.
only one is adjusted, whereas in case of the projection orfi@y. 6-10 reveal the details of the movement. In the first
the CM-ZMP-line one coordirta remains unchanged and tw@ s the biped performs sitting down after that standing up
others are adjusted. The resulting vector is denotetfadhe is performed. Fig. 6 shows the time dependent behavior of
simulation of different movements has shown that the secoti® pelvis coordinates and of the absolute trunk orientation
definition of the operatoprojection.(x) leads to the best gsus = ¢1 + g2 + g3. Fig. 7 shows the error reduction for
movement performance (see sec. llI-C). The implementatithrese variables. The trajectories for theoordinates of ZMP

of each of these three operators requires only the solutionasfd CM as well as the velocity of the-coordinate of CM

a corresponding system of linear equations with dimensignormalized to0.1) are shown in Fig. 8. The-coordinate of
less than the dimension of the vector*. This allows the ZMP z.,,, remains within the chosen ran§e0.05m; 0.2 m)
usage of more complicated 3D models for biped descriptialuring the whole movement. The-coordinate of CMz.,,

as presented here. goes to the given valu@.075m = (—0.05+0.2)/2m at



i

Y-pelvis (m)
o o
o o

T T

I
IS

o
[

X-pelvis (m)
o

,05 I L L L L L
0 0.5 15 2 25 3 35 4
2
=)
€ 1IfF~=7 === T B
2 f |
o I_ _
& o m
o
_1 Il L L L L L
0 0.5 15 2 25 3 35 4
time (s)

Fig. 6. The coordinates of the biped@efnce point and the trunk orientation.
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Fig. 10. The angle between the initial acceleration veéi@nd its projection
w*.

Fig. 9 shows the applied torques and Fig. 10 the angle
between the initial acceleration vectdr and its projection
w*, computed with the presented algorithm. Intuitively, it is
clear that the projection onto the line imposes more restrictions
than the projection onto the plane. This is justified in Fig. 10:
The difference in the direction of both vectors rises when
the operatorprojectioncni—zymp—iine(*) in step 4 of the
algorithm is active and.,,, is equal to the upper or to the
lower limit.

The authors would like to underline the importance of
the operatomrojectioncas(*) in the control algorithm. The
steering of the reference point to the goal position is achieved
by the outer control loop (see Fig. 3 and sec. Ill-A) and the
stability condition (3) will be satisfied alone by projection
of the initial acceleration vecta& onto the ZMP-plane. So
it could be asked whether the proposed algorithm could be

Fig. 7. Error reduction for the coordites of the reference point and trunk Simplified by using only one operator for projection onto

orientation.
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the ZMP-plane, but that is impossible. The proposed method
is a local one and, despite the instantaneous satisfaction of
the stability condition (3), thdiped could be steered into a

singular region, where the stability could be sustained only by
steady speed increasing of the vimgy parts. In this case, the

torque limits and/or ranges for possible movement in actuators
are reached very quickly and the system collapses. This is
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the end of sitting down and remains in this position duringig. 11.  The coordinates of the biped reference point and the trunk

standing up.

orientation: modified algorithm.



0.4 T T T T T

three, e.gw; andws, are not affected byrojectioncas (x)
03l - - CMX .1 and therefore the corresponding generalized coordingtes
- and ¢o reach the goal asymptotically controlled lyrl ¢,
-7 and ctrl ¢. Due to the above described control of the
j,’ 4 coordinate of CM, for an arbitrary chosen precisiorthere
Voo exists a time point from which eq. (5) is satisfied whith
This means that the changing of vectqris restricted to
: . : i : the two dimensional manifold, thereforg, reaches the goal
time (s) ' asymptotically together with; andgs. The case of the active

Fig. 12.  Trajectories for the ZMP, CM and velocity of CM: modifiedStep 4 is much more complicated and is not considered here.
algorithm.

illustrated in Fig. 11 and 12. In this trial the biped had to V. CONCLUSION
perform the same movement as specified above. Instead oft was shown that the trajectpgeneration for stable move-
using control algorithm in sec. Ill-B, the initial acceleratioriment of a biped and the control along these trajectories could
vectorw was projected onto the ZMP-plane according to stdj¢ merged into a single algorithm in form of a feedback
4. As shown in Fig. 11 and 12 sitting down was performegPntroller. The movements of a biped in a sagittal plane
successfully, but while standing up the system was steef@¢fh as sitting down and standing up were considered. The
into a singular region. After approx.5s the z-coordinate Performance of the algorithm was demonstrated in a simula-
of the pelvis increases steadily (see Fig. 11). The biped titign. In the simulation it was also verified that the movement
forward with increasing sged and is going to tip over thestability is not sensitive to the parameters of the algorithm.
foot edge after the torques in the actuators are not al\é mentioned above, the application field for the algorithm
to maintain the stability by increasing inertial forces of th&anges from global control to online trajectories computation.
moving parts. Fig. 12 shows that the CM has left the foot print The presented version of the algorithm does not consider the
and moves to the left with increasing speed. In this simulatidfnitation of the torques in actuators, which is very important
the second definition of the operaiomnject za;p(x) was used for practical application. The authors are working on this
(see sec. lII-B). With two other definitions even sitting dowRroblem. The adaptation of the coefficients in the controllers
was not possible. (decreasing at the beginning of the movement and increasing
On the other side the stable movement can not be provid@igthe end), is one possible approach.
only by the operatoprojectionca(x). As shown in Fig. 8 The application of the algorithm for dealing with move-
and 12, due to the inertial forces, thecoordinate of the ments like walking can be found in [11].
ZMP reaches the stability margins already at the beginning of
the movement and the robot would have fallen down withou[tl] K Hirai. M. Hirose. Y. Haikawa. and T. Takenaka. “Development of
considering the ZMP-plane in step 4 of the algorithm. hbnda hurﬁanoid rbbét,” irProcéedings 6f the IEEé Int. Cor?f. on
Robotics & Automation, 1998, pp. 1321-1326.

IV. ALGORITHM STABILITY [2] M. Gienger, K. Léffler, and F. Pfeiffer, “Towards the design of a biped

. - - jogging robot,” in Proceedings of the IEEE Int. Conf. on Robotics &
By algorithm stability the authors mean the stability of ajomation, 2001, pp. 4140-4145,

the movement, as defined in sec. II-B, and asymptoticallig] M. Vukobratovi, B. Borovac, D. Surla, and D. StdkiBiped Locomo-

ZMP,CMX(m),VCMX (m/s)
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