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Abstract— The presented algorithm enables a biped to per-
form a stable movement to a defined goal without using any
precomputed trajectories. The algorithm merges the trajectory
generation and the control along it, and can be used for global
control, for local control along an existing trajectory, as well as
for online computation of trajectories for stable movement. The
algorithm is based on a decoupling of the non-linear model and
changing the steering torques to account for both the overall
stability of the biped and for achieving the goal. The algorithm
is applied to the model of a biped moving in sagittal plane. By
specifying the goal as an arbitrary pelvis position the biped can
perform movements such as sitting down or standing up. The
performance of the algorithm is demonstrated in a simulation.

I. I NTRODUCTION

Consideration of the overall stability or the balancing of a
biped, which has the mass properties equivalent to those of
a human, is necessary even for simple and slow movements
during the task execution. Otherwise the biped will rotate over
the foot edge and collapse even if the trajectories in actuators
do not deviate from the nominal ones.

In most of the existing elaborated biped systems, e.g. [1],
[2], the movement control is divided in two levels: computa-
tion of the trajectories for a given task, and local control along
them. The overall stability or balancing should be considered
on both levels.

On the first level, the synergy method [3] and methods based
on optimization [4] are often used.

In case of synergy methods the trajectories for most of the
joints are generated e.g. from recorded human movements,
and the trajectories for the few remaining joints are computed
in relation to overall stability of the robot. Usually the move-
ments of the trunk in frontal and sagittal planes are considered
unknown. Computation of the unknown trajectories requires
a solution of the boundary value problem, and can only be
performed using iterative numerical methods.

The methods based on non-linear optimization compute the
movements of the robot by minimizing a cost function. This
cost function specifies the movement properties which are
central to the given task, e.g. minimal time and/or minimal
energy consumptions. The dynamical equations and stability
conditions are incorporated in the optimization problem as
equality and inequality constraints. Even the solution for a

simple model can be found only numerically and requires high
computational effort.

The controllers on the second level reproduce precomputed
trajectories in the actuators and balance the biped in the small
region of the nominal precomputed movement.

In this paper, an algorithm which merges these two levels is
presented. It can be used in three ways: as a global controller
which can stably steer the biped to the arbitrary goal in the
reachable work space; as local controller with a large operation
range; and as an algorithm for the online computation of
trajectories of balanced movement. In this paper, only the
movements without changing a stance foot are considered.

The problem, considered in this paper is similar to the
problem of postural adjustment of bipeds, s. e.g. [5].

The presented algorithm was developed for steering an
exoskeleton by the force imposed by the human in it. In
this application the robot must be able to perform movements
which are similar to those of the human, which could range
widely. The number of possible movements here is vast and an
offline precomputation for even a single robot is problematic.
Furthermore, by switching from one precomputed trajectory
to another, the movement can become unstable because the
distance between two trajectories could exceed the operation
region of the local controller.

II. PROBLEM FORMULATION

A. Model of the biped Robot

The biped robot is modelled as a chain of four rigid bodies:
foot, shank, thigh and trunk, as shown in Fig. 1. The dynamical
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Fig. 1. The model of the biped robot.

equations were derived using Kane’s formalism [6], and have
the following form:

M (q) ω̇ = f (q, ω) + T (1)



whereq = (q1, q2, q3)
T is the vector of generalized coordi-

nates, which are angles in ankle, knee, hip joints, andω =
(ω1, ω2, ω3)

T is the vector of the corresponding generalized
velocities. The matrix functionM(q) takes into account the
mass distribution and the vector functionf (q, ω) describes
the influence of both, the inertial forces and the gravity. The
elements of the vectorT are generalized forces applied to the
system. For the model considered, these are the torques in
the joints. The dot denotes the time derivate in a Newtonian
reference frame.

The kinematical equations for the model are obviously:

q̇ = ω (2)

The proposed control algorithm will be described using the
model shown in Fig. 1. This means that only the movements in
the sagittal plane of the robot (XY -plane) will be considered.
As will be explained in sec. III, the algorithm can be easily
extended for more complicated 3D models.

B. Stability Condition

For the formulation of the stability condition, the concept of
the Zero Moment Point (ZMP) [7], [8] is used. The original
definition of the ZMP has been slightly modified, so as to
incorporate the definition of the imaginary ZMP [7]:

Definition 1: The ZMP is an imaginary point where the
resulting ground reaction forceshould be applied, so that the
resulting torque imposed on the foot becomes zero.
This definition coincides with the definition of the foot rotation
indicator (FRI) introduced in [9]. In the authors’ opinion the
above-mentioned modification of the ZMP definition does not
justify the coining a new term for a concept which has been
discussed in relevant literature for over 30 years (for detailed
discussion of the concept itself, see [7] and [9]).

The ZMP-concept and overallstability condition are illus-
trated in Fig. 2. The forces which are exerted on the foot are
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Fig. 2. ZMP concept and overall stability of the robot.

shown in Fig. 2 (a). It is assumed that the foot does not move
relatively to the floor. The influence from the side of the robot
is replaced with two forcesFx, Fy and with the torqueMz.
From the ground, the foot experiences a pressure distribution
p and sheer friction force distributionfs. In most practical
situations,Fx and fs can be disregarded. The distributed
pressure is always applied to the foot sole in one direction
(the sole does not stick to the ground) and can be replaced
with a single resulting forceFr applying to some point within
the foot print, s. Fig.2 (b). The forcesFy and Fr are equal
and constitute a force couple with a torque equal toxzmpFr,

wherexzmp is the distance between the action lines of these
forces.

If the force couple formed byFy andFr cancels the torque
Mz, the foot does not rotate around the edge. In this case, the
ZMP lies within the foot print. If the torque generated by force
coupleFy andFr cannot compensate for the torqueMz, the
foot begins to rotate around its edge. In this case, according
to definition 1, ZMP leaves the region given by the foot print,
see Fig. 2 (c).

The rotation around the edge of the foot does not necessarily
mean that the biped is going to collapse. Theoretically this
rotation could still be controlled by means of inertial forces
generated by accelerated movements of the body parts, or
stopped by reconfiguration of the kinematical structure of the
system, e.g. additional support with the other foot. But the
question is whether such a movement has any advantages.
Intuitively, it is clear that control of the system during rotation
around the edge of the foot requires more effort. It should also
be mentioned here that it is not obvious in which manner the
human does in fact move. Even in case of running, during the
single support phase the ZMP could be in- or outside of the
foot print. To the authors’ knowledge this question remains
still open.

In this work the stable movement will be defined as follows:
Definition 2: The movement of the biped will be called

stable if the ZMP lies within the foot print.
The stability condition for the movement in the sagittal plane
can be written therefore as:

xmin ≤ xzmp ≤ xmax (3)

wherexmin andxmax are two margins of the foot print and
xzmp is given by:

xzmp = −Mz

Fy
(4)

It is worth mentioning that the violation of the movement
stability condition (3) could be caused by both a large torque
Mz (e.g. the center of mass is moving too fast or is displaced
too far forwards/backwards), and a small forceFy (e.g. the
center of mass is moving withtoo high acceleration down-
ward).

III. C ONTROL ALGORITHM FOR STABLE MOVEMENT

A. The Idea

The scheme of the control algorithm is shown in Fig. 3. The
movement goal is specified asx,y coordinates of a reference
point, which can be chosen arbitrarily. In this study, the
pelvis was taken as a reference point (see Fig. 1). The block
kinematical transformation computes the joint coordinatesq
which correspond to the specified position of the reference
point. For the model in Fig. 1, this position is uniquely defined
by the anglesq1 and q2. To define the angleq3 – trunk
orientation – the equation for the position of the center of
mass (CM) is used:

xcm = g(q) (5)
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Fig. 3. Scheme of the algorithm.

wherexcm is a x-coordinate of the CM andg(∗) is a non-
linear function inq. If xcm is specified, the trunk orientation
q3 can be easily computed from eq. (5). It is reasonable to set
xcm in the middle of the range, specified forxzmp:

xcm = (xmin + xmax) /2 (6)

If the dotted blocknon-linear ctrl has a transfer function
equal to1 which means thaṫω = ω̇∗, the control scheme
becomes similar to the widely used approach for decoupling,
linearization and control for non-linear mechanical systems,
especially arm manipulators (see e.g. [10]).

The blockrobot represents the real biped or its non-linear
model.

The block inverse dynamics computes the joint torquesT
from the given acceleration vectorω̇∗ and the actual system
state(q, ω) using dynamical eq. (1). This block linearizes and
decouples the non-linear system which describes the biped, so
that blocksrobot and inverse dynamics are equivalent to the
three independent double integrators. The movement of each
of these double integrators could be independently controlled
in different ways, e.g. with a PD or PID controller. This three
controllers are denoted in Fig. 3 asctrl q1, ctrl q2, ctrl q3.

The application of the described scheme for global control
of a biped requires accounting for stability condition (3).
The incorporation of this stability condition into the control
algorithm is the main contribution of this study. Accounting
for the stability condition (3) will be achieved by modifying
the accelaration vectoṙω in the block non-linear ctrl. As
shown in sec. III-B, this modification requires the solution of
a system of linear equations with the dimension one less than
the dimension of the vectorω. This means that computations
in the blocknon-linear ctrl are not expensive and the method
can be easily applied to models with more dimensions.

B. The Control Algorithm

As mentioned in the previous section, the novelty of the
proposed algorithm is the modification of the acceleration
vectorω̇ obtained initially as an input signal for three double

integrators. This modification is performed by projecting the
vector ω̇ onto two planes, which are denoted by the authors
as theZMP- and CM-plane. The notions of these two planes
are presented below.

After inserting the explicit formulas forFy andMz, eq. (4)
can be rewritten as follows:

xzmp + α0 = α1ω̇1 + α2ω̇2 + α3ω̇3 (7)

whereα0, . . . , α3 are non-linear functions depending on gen-
eralized coordinatesq and velocitiesω. At each moment,
the acceleration of the systeṁω can be changed arbitrarily
applying corresponding torquesT in the joints (according to
eq. (1)). By contrast, the changes in velocitiesω correspond
to actual accelerations, andthe changes in coordinatesq
correspond to actual velocities (double integrator behaviour).
This allows the coefficientsα0, . . . , α3 in eq. (7) at each
moment to be considered constants and the accelerationṡω
variables with arbitrary values. Therefore, for each value of
xzmp eq. (7) describes a plane in the acceleration space at
each moment. This plane is called theZMP-plane. Of course,
the position and orientation of this plane are changing in time.
This ZMP-plane has a clear physical meaning: choosing the
actual acceleratioṅω belonging to it, we guarantee that the
system moves at this moment of time in such a way that the
x-coordinate of ZMP will be equal toxzmp.

Similar consideration can be given for thex-coordinate of
CM, given by eq. (5). After dual differentiation of this equation
we get the formula for the accelerationacm of xcm:

acm = β1ω̇1 + β2ω̇2 + β3ω̇3 (8)

whereβ1, . . . , β3 are non-linear functions inq andω. Due to
the same argumentation as in the case of the ZMP-plane, at
each moment and for each givenacm eq. (8) describes a plane
in the acceleration space.This plane is called theCM-plane.
Again, by choosing the actual acceleration of the systemω̇
from the CM-plane, the biped is forced to move in the manner,
that xcm is changing with the acceleration equal toacm.

To achieve the movement by which thex-coordinate of
CM accelerates withacm and thex-coordinate of the ZMP
remains simultaneously equal toxzmp, the acceleration vector
ω̇ should belong to the line in acceleration space constituted
by the intersection of two planes, defined with eq. (7) and (8).
This line will be denoted asCM-ZMP-line.

The block non-linear ctrl in Fig. 3 is implemented as an
algorithm, which changes the original acceleration vectorω̇
by projecting it onto the CM-plane and CM-ZMP-line:

1. acm = kx

(
xcm − xactual

cm

)
+ kυ

(
υcm − υactual

cm

)

2. ω̇∗ = projectionCM−plane(ω̇)
3. calculatex-coordinate of ZMP,x∗

zmp,
corresponding tȯω∗

4. if(x∗
zmp < xmin or x∗

zmp > xmax)
x∗

zmp = xmin or x∗
zmp = xmax

ω̇∗ = projectionCM−ZMP−line(ω̇)
end if

in step 1, the accelerationacm is calculated as an output
of the PD controller which steers the actualx-coordinate of



CM xactual
cm to the desired positionxcm, given by eq. (6),

and at the desired velocityυcm, which is equal to0 in the
presented examples.υactual

cm is the actual velocity ofxcm, kx

and kυ are coefficients of the PD controller. In step 2, the
initial acceleration vectoṙω is projected onto the CM-plane,
described by eq. (8). The resulting acceleration vectorω̇∗

ensures thatxactual
cm moves withacm as computed in step 1. In

step 3, the newx-coordinate of ZMP,x∗
zmp, which corresponds

to theω̇∗ from step 2, is calculated with eq. (4). After that, in
step 4, the stability condition (3) is checked. If this condition
is violated,x∗

zmp has to be set to the margin value which was
violated. After settingx∗

zmp, the CM-ZMP-line is uniquely
defined and the initial acceleration vectorω̇ can be projected
onto this line. Note, that the last projection compels thexactual

cm

to move in the same way as the projection in step 2, due to the
fact that the CM-ZMP-line lies in the CM-plane. Additionally,
the projection in step 4 ensures the satisfaction of stability
condition (3).

The operatorprojection∗(∗) in steps 2 and 4 can be
implemented in different ways, important is that the resulting
acceleration vectoṙω∗ lies on the corresponding plane or line.
Three different definitions of this operator (see Fig. 4) were
investigated. For the sake of clarity in Fig. 4 only two of
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Fig. 4. Three definitions for operatorprojection∗(∗).

three dimensions of the acceleration space are shown. In the
first definition the length of the origin vectoṙω is changed
in such a way that its tip lies in the CM-plane. The resulting
vector is denoted aṡω∗

1 . In the second definition, the end
of the resulting vector, denoted aṡω∗

2 , is given by point B,
which is the crossing point of the perpendicular from the
end of origin vectorω̇ (point A) to the CM-plane. In the
third definition, in case of projection onto the CM-plane two
coordinates of the origin vectoṙω remain unchanged and
only one is adjusted, whereas in case of the projection onto
the CM-ZMP-line one coordinate remains unchanged and two
others are adjusted. The resulting vector is denoted asω̇∗

3 . The
simulation of different movements has shown that the second
definition of the operatorprojection∗(∗) leads to the best
movement performance (see sec. III-C). The implementation
of each of these three operators requires only the solution of
a corresponding system of linear equations with dimension
less than the dimension of the vectorω∗. This allows the
usage of more complicated 3D models for biped description
as presented here.

C. The Simulation Results

The following parameters for the biped model are used in
the simulation: the mass of the thigh and shank was set to5 kg
each; the mass of the trunk to40 kg; the length of the shank
and thigh was set to0.5 m and the length of the trunk junk
to 1 m. All body parts were modelled as solid cylinders with
uniform mass distribution. It was assumed that the distance
between the ankle joint in the foot and the floor is negligible
and that there is no slippage between the foot and the floor.

In blocksctrl q1, ctrl q2, ctrl q3 (see sec. III-A and Fig. 3)
PD-controllers with coefficientskq = 100 andkω = 20 were
used. The coefficientskx and kυ in step 1 of the algorithm
in sec. III-B were set to200 and28. In all PD-controllers the
dampingξ was set equal to1, therefore the coefficients satisfy
the following relation:

kω,υ = 2ξ
√

kq,x

These coefficients have an impact on the duration of the
movement and on the required maximal torques. The stability
of the movement in not affected by the values of these
coefficients in a wide range.

The computation in the control loop runs at1 kHz. MAT-
LAB /SIMULINK was used as simulation environment.

The biped had to perform deep sitting down from initial
pelvis positionxpelvis = 0 m, ypelvis = 1.0 m, q3 = 0

◦
to the

end positionxpelvis = −0.35 m, ypelvis = 0.4 m. After that,
the standing up to the initial pelvis position was performed.
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Fig. 5. Resulting movement for sitting down (left) and standing up (right).

The diagrams in Fig. 5 illustrate the resulting movement.
Fig. 6-10 reveal the details of the movement. In the first
2 s the biped performs sitting down after that standing up
is performed. Fig. 6 shows the time dependent behavior of
the pelvis coordinates and of the absolute trunk orientation
q3abs = q1 + q2 + q3. Fig. 7 shows the error reduction for
these variables. The trajectories for thex-coordinates of ZMP
and CM as well as the velocity of thex-coordinate of CM
(normalized to0.1) are shown in Fig. 8. Thex-coordinate of
ZMP xzmp remains within the chosen range[−0.05 m; 0.2 m]
during the whole movement. Thex-coordinate of CMxcm

goes to the given value0.075 m = (−0.05 + 0.2) /2 m at
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Fig. 6. The coordinates of the biped reference point and the trunk orientation.
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the end of sitting down and remains in this position during
standing up.
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Fig. 10. The angle between the initial acceleration vectorω̇ and its projection
ω̇∗ .

Fig. 9 shows the applied torques and Fig. 10 the angle
between the initial acceleration vectorω̇ and its projection
ω̇∗, computed with the presented algorithm. Intuitively, it is
clear that the projection onto the line imposes more restrictions
than the projection onto the plane. This is justified in Fig. 10:
The difference in the direction of both vectors rises when
the operatorprojectionCM−ZMP−line(∗) in step 4 of the
algorithm is active andxzmp is equal to the upper or to the
lower limit.

The authors would like to underline the importance of
the operatorprojectionCM (∗) in the control algorithm. The
steering of the reference point to the goal position is achieved
by the outer control loop (see Fig. 3 and sec. III-A) and the
stability condition (3) will be satisfied alone by projection
of the initial acceleration vectoṙω onto the ZMP-plane. So
it could be asked whether the proposed algorithm could be
simplified by using only one operator for projection onto
the ZMP-plane, but that is impossible. The proposed method
is a local one and, despite the instantaneous satisfaction of
the stability condition (3), thebiped could be steered into a
singular region, where the stability could be sustained only by
steady speed increasing of the moving parts. In this case, the
torque limits and/or ranges for possible movement in actuators
are reached very quickly and the system collapses. This is
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Fig. 11. The coordinates of the biped reference point and the trunk
orientation: modified algorithm.
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illustrated in Fig. 11 and 12. In this trial the biped had to
perform the same movement as specified above. Instead of
using control algorithm in sec. III-B, the initial acceleration
vectorω̇ was projected onto the ZMP-plane according to step
4. As shown in Fig. 11 and 12 sitting down was performed
successfully, but while standing up the system was steered
into a singular region. After approx.2.5 s the x-coordinate
of the pelvis increases steadily (see Fig. 11). The biped tilts
forward with increasing speed and is going to tip over the
foot edge after the torques in the actuators are not able
to maintain the stability by increasing inertial forces of the
moving parts. Fig. 12 shows that the CM has left the foot print
and moves to the left with increasing speed. In this simulation
the second definition of the operatorprojectZMP (∗) was used
(see sec. III-B). With two other definitions even sitting down
was not possible.

On the other side the stable movement can not be provided
only by the operatorprojectionCM (∗). As shown in Fig. 8
and 12, due to the inertial forces, thex-coordinate of the
ZMP reaches the stability margins already at the beginning of
the movement and the robot would have fallen down without
considering the ZMP-plane in step 4 of the algorithm.

IV. A LGORITHM STABILITY

By algorithm stability the authors mean the stability of
the movement, as defined in sec. II-B, and asymptotically
achieving the movement goal.

The stability of the movement is given by the algorithm
construction: acceleration vectoṙω∗ applied to the system
ensures the satisfaction of stability condition (3).

The x-coordiante of CM has the behaviour of a PD-
controlled double integrator. If the initial position of thex-
coordiante of CM belongs to[xmin; xmax], the end position is
given by eq. (6) and the damping is equal to1, thex-coordiante
of CM remains in[xmin; xmax] during the whole movement.
It ensures that the singular regions mentioned in sec. III-C will
be avoided. The proof of this statement as well as the strong
definition of singular regions shall not be presented here. In the
case of mevements like walking or running thex-coordiante
of CM could be outside of[xmin; xmax] and its end velocity
could be different from0.

If step 4 in the algorithm is not active beginning from some
arbitrary time point, the biped moves asymptotically towards
its goal. This can be shown easily for the third definition
of the operatorprojectionCM (∗). Two accelerations from

three, e.g.ω̇1 and ω̇2, are not affected byprojectionCM (∗)
and therefore the corresponding generalized coordinatesq1

and q2 reach the goal asymptotically controlled byctrl q1

and ctrl q2. Due to the above described control of thex-
coordinate of CM, for an arbitrary chosen precisionε there
exists a time point from which eq. (5) is satisfied whithε.
This means that the changing of vectorq is restricted to
the two dimensional manifold, therefore,q3 reaches the goal
asymptotically together withq1 andq2. The case of the active
step 4 is much more complicated and is not considered here.

V. CONCLUSION

It was shown that the trajectory generation for stable move-
ment of a biped and the control along these trajectories could
be merged into a single algorithm in form of a feedback
controller. The movements of a biped in a sagittal plane
such as sitting down and standing up were considered. The
performance of the algorithm was demonstrated in a simula-
tion. In the simulation it was also verified that the movement
stability is not sensitive to the parameters of the algorithm.
As mentioned above, the application field for the algorithm
ranges from global control to online trajectories computation.

The presented version of the algorithm does not consider the
limitation of the torques in actuators, which is very important
for practical application. The authors are working on this
problem. The adaptation of the coefficients in the controllers
(decreasing at the beginning of the movement and increasing
at the end), is one possible approach.

The application of the algorithm for dealing with move-
ments like walking can be found in [11].
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