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Abstract— In this paper we present a method to calibrate
the surface EMG signal-to-force-relationship online. For this,
a simple biomechanical model composed of bones and muscles
is used. The calibration is based on an online optimization
algorithm where the error between the movement of the
human and the movement computed with the biomechanical
model is minimized. The proposed method will be part of a
control system for an exoskeleton robot that should aid the
wearer in everyday-life situations like walking, standing up
and sitting down.

In contrast to existing methods for the calculation of the
EMG signal-to-force-relationship, we are not interested in
the exact force values of every single muscle, but our model
groups some muscles together and uses the EMG signal of one
of those muscles as a representative for the group to simplify
calculations.

The performance of the presented method was investigated
on the leg movement in sagittal plane without contact to the
environment.

I. INTRODUCTION

For many decades surface electromyography has been
studied by many researchers in the medical and biome-
chanical fields to get a better understanding of how muscles
work internally and how and when they are activated.

In recent years more and more studies have explored
the relationship between single muscles and the complex
movements of the human body.

Most of these studies were focused on analysing dis-
abilites, anomalies and how to track a progress in rehabil-
itation. In contrast to that, only a few publications focused
on using electromyographical signals in real-time to control
biomechanical robots e.g. [1]-[3].

The main reason for this is the difficulty to map the
EMG signal into the force a muscle is producing [4]. The
approximated relationship itself is not too complex, see
e.g. [5], but influenced by many different parameters. Some
of these parameters only vary among different subjects, but
some are even different from day to day. Examples for
the first type are: point of origin and insertion of every
muscle, body weight and lengths of bones and tendons for
example. Some representatives for the other class of factors
are moisture on the skin, fatigue of the muscles and blood
circulation.

A. Why EMG?

There are many different approaches for tracking move-
ment of human beings. Some use ultrasonic or visual
sensors, some goniometers, accelerometers or other tech-
niques. Every technique has its advantages and disadvan-
tages. All those systems sense the current movement. With
EMG signals it is possible to track the intended movement,
which might differ from the current movement due to
obstacles or lack of sufficient muscle-power. And if the
EMG sensors are placed carefully, the intention should
even be available ahead of time. The reason for this is
that EMG signals are detectable slightly before the actual
movement is performed, because muscles take some time
to produce the force after having received the activation
signal.

Those properties of EMG signals should be very helpful
in developing a real-time control unit for an exoskeleton.

B. Goal

More or less uncalibrated parameters for the EMG-to-
force relationship could be used with an experimentally
identified threshold to activate certain patterns of
movement [1], [2]. But the idea of our work is to
include the EMG signals directly into the control loop
of the exoskeleton to allow for more adaptable and
spontaneous movements. To achieve this, an automatic
calibration method for those parameters is required.
The more accurate the relationship between the EMG
signals and the forces exerted by the muscles is identified
the more accurate the system attached to the human
body can be controlled and the interaction will be more
natural. The same control scheme and calibration can also
be used with haptic, remotely controlled or similar devices.

The paper is organized as follows: In sec. Il the biome-
chanical model, the EMG set up and the motion capturing
system are described. In sec. 11 the optimization algorithm
is explained in detail and in sec. IV the properties of
the suggested approach are summarized. The experimental
setup is described in sec. V. Results demonstrating the
performance of the calibration are presented in sec. VI and
discussed in sec. VII.

Il. ENVIRONMENT

In this section the environment is described in which the
calibration system is embedded. Please refer to Fig. 1 for
an initial overview of the whole system.

As stated before, the basic idea is to let the Human
interact with the Mechanical System. To achieve this, the
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Fig. 1. General control scheme for a mechanical system attached to the
human body: The EMG signals from the subject are captured, converted
into forces and brought into the biomechanical model. The model then
calculates the desired joint angles and velocities and passes them to
the motion controller that is controlling the mechanical system. The
calibration compares the reference angles in the joints with the angles
computed by the model and modifies the EMG-to-force-parameters for
the muscles.
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EMG Sgnals are collected from some of the muscles of
the subject and converted to forces in the block EMG-to-
Force Converter. The resulting Forces are then fed into
the Biomechanical Model that describes the human subject
wearing the sensors. Through forward dynamics compu-
tation accelerations for all body parts are calculated from
the muscle forces and the current state of the model. After
double-integrating those accelerations, the resulting Kine-
matical Data (joint angles and velocities) are interpreted as
the desired movement of the human. The Motion Controller
takes this desired movement, modifies it if it does not
lead to a stable pose of the human and computes the
control signals for the Mechanical System. Because of the
connection between the human body and the mechanical
system, the motion of the actuators of the mechanical
system affect the human body (Force Feedback).

To be able to calibrate the parameters of the EMG-to-
Force Converter the calculated Kinematic Data from the
Biomechanical Model are compared with the Reference
Kinematic Data taken from the human body with additional
sensors (see sec. I1-C). The computed parameters are then
brought into the EMG-to-Force Converter again. Those
additional sensors should be attached to the human with
or without an exoskeleton to allow recalibration whenever
necessary.

The block Calibration is the main subject of this work.
The calibration is implemented as an online optimization
process of the EMG-to-force relationship parameters by
minimizing the quadratic difference between the desired
and reference movement data. Here only the movement of
one leg in sagittal plane without interaction with the envi-
ronment is considered (refer to sec. V for the experimental
setup).

A. Biomechanical Model and EMG-to-Force Converter

In literature a lot of information can be found about
the anatomy of muscles, joints, tendons and tissues, see
e.g. [6]. The properties of those are well investigated and
available. Also elaborated investigations have been done
on biomechanical modelling and verification of different
models for muscles, tendons and joints, see e.g. [7]. Un-
fortunately, with increasing complexity of the model, more
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Fig. 2. The biomechanical model composed of trunk, thigh, shank and
four mucles: MO0, M1, M2, M3

parameters have to be calibrated - albeit most of them not in
real-time and for each subject only once. But nevertheless,
it is advisable to keep the model as simple as possible.
One reason for this is the fact, that it is impossible to
get EMG signals from every muscle and in equally good
quality. So even though it is possible to create a complex
and realistic model of the lower extremities, see e.g. [8],
it is not possible to provide all those muscles in the model
with properly recorded EMG values. This would result in
an uncompensated defect of some muscles.

For our experiments we have chosen a very simple
model: It consists of the trunk, thigh, shank and four
muscles, as shown in Fig. 2. Please note that each of
those muscles in our model is representing a collection
of muscles in the human body and does not necessarily
have anatomical analogy. Of course the EMG signals are
acquired from specific muscles of the human. For this
we selected the muscles by their contribution to the most
important movements of the leg: m. sartorius (A£0), m.
glutaeus maximus (M1), m. quadriceps femoris (M2),
and m. semimembranosus (M3). We are aware that this
is a rough approximation, but keeping in mind the goal
to provide input values for control units of a mechanical
construction and not pursueing clinical analysis, this seems
to be an adequate simplification. If required, more muscles
can easily be integrated into the model.

Each of those muscles is only represented by a con-
tractile element. The passive elastic and viscous elements
are summed up in the joints spanned by the muscle (in
contrast to the Hill model) together with the friction of the
joints. This simplification is similar to one presented in [9].
The overall friction is assumed to be 5.0 in the hip
joint and 0. 2N”jf in the knee. The knee value is inspired
by [10] and [11], the value for the hip was optimized by
hand. So the parameters of one muscle in our model are:
the point of origin and insertion and the two parameters in
the EMG-to-force function:

FEIWG(¢S) ¢e) = d)s (1 6_¢ew(t)) (1)

where z(t) is the postprocessed EMG signal and ¢,
¢. two muscle parameters. Since muscle origin and in-
sertion do not vary for the same average adult, offline



optimization can be performed here. But in most cases even
automatic calculation derived from the body dimensions
should suffice. Due to lack of space here, the biomechanical
model can be received from the authors on request. There
are many other properties described in literature that are
neglected so far. But they do not have an influence on the
calibration algorithm itself. They can be incorporated later
if needed.

The thigh and shank are modelled as cylindrical rigid
bodies. The trunk was assumed to be fixed. Body masses
for the thigh and shank are calculated as fixed fractions of
the total body weight (motar = 88kg) of the subject (the
figures can be found e.g. in [12]). The dynamic equations
were derived using Kane’s formalism [13], and have the
following form:

M (q)u=f(q,u)+ T (q,u) 2

where

e q=(q1, QQ)T is the vector of generalized coordinates,
which are angles in knee and hip joints

e u = (ug, uQ)T is the vector of corresponding gen-
eralized velocities (with g = u, the dot denotes the
time derivative in a Newtonian reference frame)

o M(q) (matrix function) takes into account the mass
distribution

o f(qg,u) (vector function) describes the influence of
both inertial forces and gravity

o T is a vector of the generalized forces applied to the
system. For the model considered, these are:

— the forces produced by the muscles (Feaq)
multiplied with the nonlinear function g(q) (cur-
rent system configuration and geometry of the
muscles)

— friction torques in joints (depending on u)

The dynamic egs. (2) were generated with the symbolic
manipulation tool AUTOLEV [14]. The script for the system
description and egs. generation can be received on request.

B. EMG Setup

The EMG signals are sampled with 1 KHz from DelSys
2.3 Differential Signal Conditioning Electrodes [15] with
an inbuilt gain of 1000% and a bandpass filter from 20-
450 Hz. The input data is rectified and then smoothed by
a lowpass filter with a cutoff frequency of 5 Hz [16].

C. Reference System

The reference system is needed to capture the actual
movement of the human limbs for the calibration step.
We have used a reference system based on the two axis
accelerometers ADXL210 from AnalogDevices Inc. [17].

As shown in Fig. 3 the orientation of the limb in the
sagittal plane can be calculated by projecting the earth
gravity field into the x- and y-axis of the sensor:

G .
.= arctan?2 [ =%
@ ( G)

One sensor was placed on the thigh and one on the
shank, both as close as possible to the rotation axes of the

ADXL210 joint

Fig. 3.  Capturing the limb movement with two axes accelerometer
ADXL210.

joints to reduce the inertial acceleration resulting from limb
movement (the error is small enough below 45%). Due to
the nature of the sensors, there is only 0.5% temperature
drift and a peak-to-peak noise below 2%. Unfortunately,
only 10% of the full range of the sensor can be utilized
(full range is £10g).

I1l. OPTIMIZATION

The overall goal of the optimization algorithm is to allow
online calibration of crucial parameters of the system with
a small number of movements and automatic recalibration
if a sufficient number of new measurements are available
to adapt the parameters in a potentially different situation
(e.g. muscle fatigue, moisture on skin).

As already mentioned in section Il-A the most varying
parameters are ¢, and ¢.. Together they form a parameter
set P, = {¢s, ¢} for the muscle m.

A straightforward approach would be to record a history
over a certain period of time and perform some error min-
imization between the angles of the reference system and
the calculated angle output of the model while modifying
all parameters of all muscles.

Beside the immense computation time needed for a
complete recalculation of the whole movement history
for one optimization step (even when reducing the data
to every n-th value or the last ¢ seconds), this method
has a major drawback: It does not take into account the
activation of a muscle. Parameters of a muscle should
only be optimized when a certain amount of representative
and different EMG values have been collected. It does not
make sense to calibrate parameters contributing to a force-
function (and force leads to acceleration), without motion
to get reference values.

To avoid this problem the algorithm collects measure-
ments in a table with the size of 7' entries. Each entry
E,,0 < n < T in the table contains the angles ¢1(¢),
g2(t) and angular velocities u1(t), ua(t) of the sensors
from the reference system at ¢t = ¢,, — At,, and t = t,, and
the timestep At,, (between the last measurement and the
current measurement, Fig. 4).

Calculation of the entry index in the table is based on
the idea of hashtables: We define a function

h(x)::vZ with 2 >0, a >0
«

that calculates the index from the postprocessed EMG
signal z(t). To emphasize a certain working range of
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Fig. 4. The flow chart shows the data processing after low pass filtering the rectified EMG values: The example table has a size of 8 entries

(realistic sizes start at 20-30) and is indexed by the linear function h(x) as shown in the middle. The right part shows the information stored for every
measurement in the table. The solid circle in the left part of the diagram represents the current table entry, the dashed circle was the first measurement
appearing in the table. This entry has been overwritten several times afterwards.

the muscle a more complex distribution can be chosen.
The function h(x) is allowed to exceed the upper table
boundary 7' — 1. In this case, the table is resized so that
h(z) = T — 1 is fulfilled. By doing this, a can be a rough
estimation of the maximum EMG signal and does not need
to be the upper limit. All this ensures that the table contains
values from different levels of activation of the muscle.
Longer periods of inactivity or unchanging activity will not
affect previously collected measurements except for entries
with the same level of activity.

When the table has at least n,,;, = 0.5 x T" number of
entries, the parameter optimization is started. The mathe-
matical optimization of the parameters is performed with
the Nelder-Mead Smplex Algorithm [18]. This algorithm
requires an error-function that is evaluated several times
during a single step of the algorithm and therefore should
be executed as fast as possible to allow online optimization.
Evaluating the error-function is performed by calculating
the biomechanical model for a single timestep At,, for
every valid entry E,, in the table. The error e(P,,) for a
single timestep ¢,, of the table entry E,, and the parameter
set P, is

e(Pm) = Z{q;mdel(tn) - qgef(ﬁn)}Q
A
where i is the index of every joint that is affected by the
muscle. The total error of the current calibration step is

E(Pp) =Y e(Pn)
tn
where ¢,, refers to all measurements in the table.

The Nelder-Mead algorithm terminates when either a
local minimum criterion is met (refer to [18], [19] for more
details of the method) or a maximum number of iterations
is reached. Then all entries in the table become tagged
as used. A recalibration is started after n,,., = 0.75 x n
table entries have been added or overwritten since the last
calibration.

The optimized parameters are immediately brought into
the biomechanical model and are used for all further
calculations. If the newly emerged F'g);¢ function differs

Anglein [deg]
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Fig. 5. The diagram shows the lifting of the thigh in an arbitrary pattern
(standing position, thigh angle in sagittal plane, Odeg means perpendicular
to the ground) with online calibration and evaluation. The solid curve
is the reference measurement, the dashed one is the curve from the
model. Points in time where calibration was performed are marked with
circles. Note the immediate reaction of the model to the new parameters.
Sometimes this reaction might lead to unwanted overshootings for large
changes. The initial table size was 30 but during the process it was
enlarged to 36.

from the old one significantly, the model might oscillate
because of the resulting acceleration. This can be avoided
by overwriting the generalized coordinates ¢; and velocities
u; with the values calculated from the reference system if
needed.

V. SUMMARY OF THE IMPORTANT PROPERTIES
The method has the following properties:

« Only one muscle is calibrated at the same time, but
a single measurement can be put into any number of
tables.

o The smaller the number of table entries, the faster the
method is.

« The larger the number of entries in the table, the more
accurate the optimization will be.

« Recalibration is only performed if a minimal num-
ber of new, representative measurements have been
recorded.
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Fig. 6. Fig. shows the postprocessed EMG values (rectified and low pass
filtered) and the resulting force values, calculated with the EMG-to-force
function Fgara (¢s = 288.8 and ¢ = 349.2).

« A single measurement entry has a timestep of At,, =
—20__ o avoid artefacts in the EMG signal and
plerate

noise in the reference system.

V. EXPERIMENTS

The experiments were performed in an upright standing
position of the subject. The left foot was put on the ground
for support, the right thigh was lifted with different veloc-
ities in sagittal plane with the shank pointing down. The
torso and hip was held in position. In the biomechanical
model, the hip is fixed in place so that the supporting leg
does not need to be modelled.

During the raising and lowering of the leg, the main
force contribution from the muscles come from the group
represented by A0 (all other groups can be neglected in
our experiments) and this is the only group considered
in the diagrams here. The displayed angle is the angle
between the shank and the line of gravity: 0 degrees means
pointing down to the ground, 90 degrees is parallel.

The movement was not hindered by any obstacles and
the only external force affecting the leg was gravity. If other
forces are applied to the leg (like ground reaction forces)
they have to be added to the biomechanical model as well.
But that does not affect the calibration algorithm itself.

In Fig. 5 the results of an experiment are shown: The
reference angle of the thigh is compared to the angle
calculated with the biomechanical model during online
calibration. The Fig. 6 shows the EMG signal together
with the corresponding force for the first 8 seconds of the
movement.

V1. RESULTS

As can be seen in Figs. 5 and 7, the calibration method
produces a sufficiently good relationship between the EMG
signal of the muscle and the resulting force so that the
correlation between the reference angle and the calculated
model angle is clearly visible.

While the calibration is performed, there are sometimes
unwanted rough changes when the parameters are fed back,
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Fig. 7. The same curve as in Fig. 5, replayed and with optimization

turned off. The parameters ¢s = 275.3 and ¢ = 237.9 used for Fgyra
have been calculated with online optimization in the original run shown
in Fig. 5. As could be expected, the curve-fitting is more accurate, since
from the beginning good parameters are known and the model is not
disturbed by parameter feedback.
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Fig. 8.  This Fig. displays the Fgare function with the different

parameters resulting from the calibration steps marked in Fig. 5. The range
of the postprocessed EMG signal is roughly between 0V and 0.0003V/
in this experiment.

but this could be reduced by gradually changing the old
parameters to the new ones over a short period of time.

Fig. 7 shows a replay of the same movements, but with
no online calibration. The parameters used here originate
from the original run. This demonstrates that the model
reflects the properties of the subject’s leg very well - if
not in every aspect, but in those that are relevant for the
regarded movement.

Fig. 8 shows the Fpyre function with the parameters
resulting from the optimizations marked in Fig. 5. The
functions look quite similar (in an ideal model the parame-
ters would always be the same) but do not converge toward
a fixed value. That lies in the nature of the calibration
method, because old measurements might be overwritten
after a while (to minimize the computation cost) and thus
do not have an effect on the calibration afterwards.
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Fig. 9.  During this experiment no calibration was performed. The

parameters ¢ and ¢. have been taken from the prior experiment shown
in Fig. 5. From the set of available values the results from calibration
step 7 have been taken, since they are quite close to the average.

VII. DISCUSSION

In section VI we have seen that the calibration method
produces values that lead to quite a good imitation of the
subjects’s movement through the model. But what does
quite good mean? This certainly depends on the whole
application of the model. As stated in the introduction,
our main focus is to allow interaction of a human being
with an exoskeleton robot and to determine the intention of
movement from a subject as early as possible. That means,
a large delay between signal acquisition and presentation
of results is to be avoided and can, if needed - within limits
of course - be traded for accuracy.

As seen in Fig. 7 the delay is small if the parameters are
defined well. So that raises the question, if recalibration
is necessary very often. In Fig. 9 a different movement
pattern (but same conditions as before) has been tracked
with the model parameters from the well known experiment
shown in Fig. 5. As can be seen, the results are surprisingly
good. But this experiment had been performed within a
few minutes after the first experiment. So the physical
conditions of the subject (mainly the skin) has been more
or less identical. But when the experiment was repeated
another day (the sensors have been removed in-between),
the parameters had to be recalibrated to lead to good results
again. So it is wise to recalibrate at the begin of every
experiment and after some time just in case anything has
changed.

VIIl. CONCLUSION

A method for online calibration of the EMG to force
relationship was presented. The proposed algorithm was
designed as part of the control system for an exoskeleton.
In this context the main attention was paid not to the
anatomical correctness of the biomechanical model of the
human and the exact EMG-to-force relationship for single
muscles but to the capability of the system to calculate the
intended movement of the human.

It was shown that with the presented version of the
algorithm calculation of the intended movement of the
thigh is possible. At the moment, the results of the calcu-
lated movement are achieved almost at the same time the
movement is performed. We are working on improvements
of the algorithm, so that a reliable forecast of the human
movement becomes possible. The ways to achieve that
could be: choosing better parameters for muscle origin and
insertion as well as adding one or two properties of the
muscles to the model.

One of the next steps will be to extend the biomechanical
model to allow experiments with more complicated move-
ments where reaction forces (e.g. ground reaction force) of
the environment will be incorporated.

All the experiments have been performed with healthy
persons and without an exoskeleton. Tests with disabled
persons have to be done yet. But we hope that in the next
future it will be possible to realize an intuitive EMG-based
human-to-robot interface.
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