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Zusammenfassung

In dieser Arbeit wird ein Steuerungssystem fur Exoskebattgestellt, das elektri-
sche Signale von Muskeln als zentrales Kommunikationshzaittischen dem mensch-
lichen Benutzer und dem Exoskelett verwendet.

Diese Signale werden auf der Hautoberflache oberhalb adsdgewMuskeln auf-
gezeichnet und spiegeln die Aktivierung der Muskeln widge werden durch ein
ausgeklugeltes, aber vereinfachtes biomechanisches |Miate menschlichen Kor-
pers ausgewertet, um die gewlnschte Handlung des Benatzeuteiten. Eine Un-
terstlitzungsbewegung fur diese gewtinschte Handlung weirechnet und durch das
Exoskelett ausgefihrt.

Das biomechanische Modell vereint Ergebnisse von verdehien Forschergruppen
aus der Biomechanik und Biomedizin und wendet dabei eiriigdié betrachtete An-
wendung sinnvolle Vereinfachungen an. Es beinhaltet dahmmeter, die bestimm-
te Eigenschaften des menschlichen Benutzers und dess&anduseschreiben. Fir
diese Parameter wird ein Kalibrationsverfahren vorgkstis sich lediglich auf am
Exoskelett befindliche Sensoren stitzt. Es bietet aul3endeim einen tiefen Einblick
in die Funktionsweise des Modells.

Ein Exoskelett zur Unterstitzung der Kniebewegung wurdeverien und aufge-
baut, um das neu entwickelte Modell zu validieren und dieraiktion zwischen dem
Menschen und dem Exoskelett wahrend alltaglicher Bewegungjt Kraftunterstit-
zung zu untersuchen. Die Ergebnisse dieser Untersuchuveyelen ebenfalls prasen-
tiert.






Abstract

This work presents a control system for exoskeletons thi@eas electrical signals
from the muscles as the main means of information transgpamtbetween the human
operator and the exoskeleton.

Those signals are picked up from the skin on top of selectestlasi and reflect the
activation of the observed muscle. They are evaluated bplaisticated but simplified
biomechanical model of the human body to derive the desicedraof the operator.
A support action is computed in accordance to the desiradraanhd is executed by
the exoskeleton.

The biomechanical model fuses results from different bicimaaical and biomed-
ical research groups and performs a sensible simplificatimsidering the intended
application. It contains parameters which reflect propentif the human operator and
his or her current body state. A calibration algorithm faysl parameters is presented
which relies exclusively on sensors mounted on the exoskel@nd provides deep
inside into the mechanisms of the model.

An exoskeleton for the knee joint support was designed andtoacted to verify
the model and investigate the interaction between the huparator and the machine
in experiments with force support during everyday movemenhose results are also
presented here.
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1 Introduction

"To move things is all mankind can do; ... for such the solecatamt is
muscle, whether in whispering a syllable or in felling a &ire

(Charles SherringtorThe Linacre Lecture, 1924

The human body consists of more than six hundred muscledupirty movements
which are inseparably connected to its life. That does noéssarily refer to the vital
functions of the body, like breathing or the heartbeat. fén®eto movement in general,
which is very important for all living creatures.

Aside from the immediate needs to eat, or the desire to coruatg be it with
words, gestures or the whole body posture, mobility is onth®@Mmost important things
in life. It does not only mean to travel around by car to a nbaing city or by
airplane around the world. Already the common daily aaggitire very important for
the quality of life: Getting up from bed in the morning and lag to the bathroom,
the breakfast table, or the refrigerator. Or during workether inside an office or
while carrying heavy parts in a factory.

Furthermore, lack of mobility often results in lack of paipation in social life,
which in turn leads to an undesired reduction of commurocatit is also important
for the body health to move around to activate the circutasigstem of the body, the
muscles, and to breathe fresh air.

In this work a device and control system are presented whipp@&t a human op-
erator with extra force in the knee joint. The device is waiwuad the leg and should
increase his or her mobility by supporting the thigh musctsch devices are called
exoskeletons

According to [VBSS90],"Exoskeletons in general, are structures of rigid links,
mounted on the body of some living vertebrae and followiegniin directions and
having the main joints of the living organism’s endoskealéto

To put it into the context of this work, the exoskeleton is @rpanent contact with
the human body, resembling the limbs, with the intelligesuee flexibility to perform a
task originating from the human operator, while strengith @mdurance is contributed
by the machine. As far as the operator is able to, the codperbétween the two is
designed in such a way that the human is in control of the mewsn

While the exoskeleton that is presented here - with one tedudegree of freedom
in the knee joint - already offers some support, an extengeskeleton covering more
limbs and using the same interface has a variety of poteatiglications: For healthy
people they can give support while carrying heavy loads,ef@mple in a factory
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environment, on a construction site, or at home, transfgttie major part of the load
to the exoskeleton to protect the body. Depending on the giegght, and handling
of such devices, they could even be beneficial in everydayalihome, especially for
elderly people, to improve mobility. But not only healthyopée can take advantage of
the support: Exoskeletons can offer assistance to patilemisg rehabilitation of the
locomotor system by guiding motions on correct trajec®tteteach motion patterns,
or give force support to be able to perform certain motioradlafThis could intensify
the training leading to better results and reduce the cott@ivhole rehabilitation
process.

But exoskeletons do not always have to work in cooperatidh thie operator: Ex-
oskeletons also offer a unique way of giving force feedbacthe human body. By
applying some resistance to the movement of the operatgrcéue act as haptic in-
terfaces for virtual reality, telemanipulation, gamesd @&mtertainment: The virtual
world can be felt and manipulated. For example, stairs casirbalated, the walking
on muddy ground, or the effect of obstacles in an unstrudtanzironment.

In a normal rather unstructured environment movements imeistdapted perma-
nently to the situation: Steps have to be climbed, incloraiof the floor have to be
compensated, and finally, transitions between movemekasyétting up from a chair,
walking, and climbing a stair, have to be performed fluently.

If proper hardware exists that actuates sufficient joinsuggport those movements,
the problem of recognizing the intended action of the operatises. Only if this in-
tention is known to the system it can properly react eithesugporting the movement
or by hindering it to simulate external influences.

Such a system requires a flexible interface, because of tteerange of movements
to be performed, which collects all required informatiorttsat the intended action of
the operator can be successfully derived.

As diverse as the applications are, so are the operators Whoowtrol the device:
From healthy and fit persons, to weak and disabled patiemsefmes, a defect in
the locomotor system of the human body is also accompanigdavnental defect,
complicating things even more.

Ideally, the control system has to be adaptable: The exeskeshould offer maxi-
mum flexibility for healthy people who can take advantagéat.t For disabled people
the flexibility must be limited, to avoid undesired behavidithe system if it cannot
fully be controlled by the patient. Complex control devieeay require too much
mental effort, or simply cannot be handled. In such casesdh&ol system must take
over some additional functions, for example, maintenarig®stural stability.
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1.1 Initial Considerations

As was motivated in the previous section, the numerous egipns lead to a num-
ber of different potential users of such exoskeletons,y@rex of them with different
abilities, and with different requirements towards thetoalrsystem. But all have in
common that an intuitive interface reduces the mental lbatlis required to handle
the system. The operator can focus on fulfilling a task withekoskeleton rather than
focus on mere control of the device.

When considering the choice of input devices for an intaitiaman-machine in-
terface, two aspects are important: First, the latency éetwthe appearance of the
desire to perform a movement and the actual support has thdsg and second, the
flexibility of the interface to recognize a variety of movem®needs to be given. Min-
imizing the latency is important for a powerful support thgh the exoskeleton. With
a high latency, it is impossible for the operator to conthe tievice, because he or she
cannot react quickly to the resulting movement. The fledibis important to allow
the exoskeleton to work in real-life environments.

The optimum would be, if the human wearing the orthosis synipés to perform
the movement naturally, without any additional communaato the exoskeleton.
This effort has to be recognized by the interface with appate sensors to activate
the support. To come near this optimum, the interface shoeiicbonnected as close to
the neurological system of the human as possible.

The worst case would be to connect the exoskeleton to amexidevice, for exam-
ple, a keypad or a wheel that has to be manipulated: Firsgpgkeator would have to
transfer his or her desired movement into a movement thatmvahipulate the input
device. Second, the signals have to travel completely girdkne body, and fulfill the
movement that results in manipulation of the input devicaly@hen can the control
system start the support.

By using the mechanical construction of the exoskeletorhadrput device, the
transferring thought in the brain can be omitted, reducivgrhental load. Unfortu-
nately, the interaction forces between the human operatbtree exoskeleton cannot
be measured accurately to determine the intended actiomnddcontact with the en-
vironment it cannot be distinguished between forces adtioig outside, and forces
originating from the operator’s muscles, which indicate desire of motion.

Moving one step closer to the origin of the motion leads todbmtraction of the
muscles. Prototype sensors exist to measure the muscledsarflyINHO4, AJL06]
on top of the skin to derive the level of activation and thecéooutput. But those
sensors are not readily available, and only preliminargisgion the quality of the
signals exist. But prior to the actual contraction of the oheisthus even closer to the
origin of the desire, a signal is emitted by the muscle whih lse detected by either
needle electrodes, inserted into the muscle, or surfaceetles, fastened on top of the
muscle that should be observed. This signal appears ducth@ion of the muscle,
approximately 20-80ms [CK79, ZLMF95, VMIS90] before thesuking contraction
begins.
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Moving further along the neural pathways towards the bravuld further reduce
the latency of the system, but unfortunately no sensorsvaitahle to extract detailed
information about the desired movement from the brain onapiord, necessary to
correctly identify a variety of movements. Recent resultsrf brain interfaces can
be found, for example, in [BDK06, Moo03, LSW 04, WMVO00]. But it has to be
kept in mind that not all movements are controlled by therpraspecially rhythmic
movements, like walking, and cannot be extracted from there

Motivated by this fact, this work focuses on investigatimglauman-machine in-
terface based on the above mentioned biological signalseofuscles, the so-called
electromyographic signals (EMG signals). Utilizing thasgnals is a good balance
between proximity to the origin of the desire and interpéiy of the signals. Ac-
cording to [BD85], electromyography ithe study of muscle function through the
inquiry of the electrical signal the muscles emanate.”

In the course of this work, electromyography always refeisurfaceelectromyog-
raphy, meaning that the sensors are put on the skin on togohtiscles. Beside the
easier application of the electrodes, signals from thossa@s give a better estimation
of the overall activation of the muscle. Invasive electragmaphy is rather suited to
investigate the internal processes within a muscle, wisictot required here.

Advantages of using EMG signals in general are:

* EMG signals are directly linked to the desire of movemerthefperson, whether
the movement is executed voluntarily or is initiated throwgreflex response
(except for people with certain diseases).

* No movement of the limbs is necessary: If the muscles aremeak or the
external load too heavy, thetentionof movement castill be detected, although
no movement is performed.

* EMG signals are emitted unconsciously by the operatorennd or she is per-
forming the desired movement or is trying to do so. No adddlanental load
is created.

» The EMG signals are emitted earhgforethe muscles contract, because of sig-
nal propagation delays and because the muscle fibers needisoerto contract.

» The measurement of the signals is not influenced by tempewdaernal influ-
ences like contact forces, in contrast to force sensors.

Unfortunately, EMG signals have some properties which nth&epractical appli-
cation difficult. Those are described in section 3.3.

For the purpose of this work, only healthy subjects have begarded, because
the EMG signals utilized here are always present. They mpgapdifferent, but the
information which is transported remains the same: It isaly linked to the desire of
movement. For patients this is not necessarily true, dapgrmh the disease or injury.
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The signals may be distorted or almost not detectable irmdrcases. Adapting the
system to a variety of patients is a different and complelk, tespecially because more
stringent safety measures have to be implemented.

1.2 Problem Formulation

The exoskeleton is in permanent close contact with the hupoaly. Since it does

not necessarily cover all limbs but only the ones that negpat, the movement
generated by the exoskeleton must be in concert with moveneéithe other limbs.

Otherwise stable and safe locomotion is impossible. Toeaehthis, several problems
have to be solved.

Intention Recognition and Support Computation To compute a sensible sup-
port for the actuation, the desired action of the operatettbé®e known to the system.
As motivated in the previous section, the interface betwheroperator and the exo-
skeleton is based on EMG signals. In addition, some infdomatbout the kinematic
state of the operator is known. The activation and the stdternation have to be
read and evaluated with a short latency to deduct the desitézh of the operator and
subsequently a sensible support that can be contributedeogdtuator. The latency
of the system has to be kept so small, that stable movemem&wiseful gain is pos-
sible. Otherwise the supported leg would always move lata]ihg to an unbalanced
movement. It is hard to quantify the latency more accuraaa #inort enough The
validity of the realized latency can only be verified with exnents that show the
overall performance of the system.

Predictability of Support The resulting support or joint trajectory has to be pre-
dictable by the operator, because he or she has to take thersiqto account during
the movement. If the operator is surprised or frightenecdiybiehavior of the system,
he or she cannot take advantage of the support and will beccangped and feel un-
well. But naturally, the operator has to learn to incorpetake given support into the
movements. This can be compared to two people working tegeth the same task,
for example, carrying a table. Itis best if both can predietlbehavior of the other one
to coordinate the own movement appropriately.

Parameter Calibration A system that is working so close to a human operator
possesses parameters that have to be optimized for thedudiyperson. A calibra-
tion algorithm has to be developed and implemented thatrmé@tes all necessary
parameters. To avoid limitation of the practical applicatof such an exoskeleton, it
is desirable that the calibration can be performed with ageable time and effort,
and without a complex external calibration setup. Some oehparameters have to
be calibrated whenever the exoskeleton is donned. It wander the idea of a mobile
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system useless if the calibration could only be performeal special place, or with a
special laboratory setup.

Validation with Experiments The feasibility of the proposed system can only be
verified in experiments with a powered exoskeleton becatige anteraction between
the human and the machine. The most important movementshbatd be supported
by the system and are used for evaluation of the algorithnes, getting up from a
chair (similar to knee bends or when lifting an object), sgtdown, slow walking, and
climbing stairs up and down. Arbitrary transitions betwdlense movements should
be possible, and the movements should be adaptable by, donp&, stride-length,
gait velocity, and step height. To actually perform the expents and to investigate
the human-machine interaction, an exoskeleton has to hgn#eksand constructed.

1.3 Contributions of this Thesis

The work presented here is a study on the interface and ¢@ystem based on bi-
ological signals which are recorded from the operator. Byppr evaluation of those
signals, the intention of performing the movement can bealet, and the movement
can be adequately supported.

Although biological signals are a very good interface betviuman and machine,
those signals have rarely been utilized to control exostielgystems. As is described
in section 2.1, many of the current projects rely on companaif inverse dynamics to
estimate joint torques which are compensated in part by¢heation. Other projects
do use EMG signals, but in a rather basic fashion, not uttdjzialuable results from
researchers of the biomechanical or biomedical communitigo are experts in this
field. A rare exception for an EMG controlled arm reading miation from two
muscles can be found in [RBFAO1].

This thesis presents a control system with a new biomecalbmicdel of the human
body that fuses models developed in the biomechanical anddaical communities,
and adapting them to the specific requirements for exosketzintrol. Different find-
ings have been integrated, and complex models have beecettlua sensible level
of abstraction in context of this work, as will be describattt. To the best knowledge
of the author, it is the first time, that a sophisticated biohanical model utilizing
EMG signals is applied to the control of a lower extremity gx&leton.

Furthermore, a new calibration algorithm is presenteddhatvs the determination
of parameters depending on the operator and his or her ¢wwadition through sen-
sors mounted exclusively on the orthosis, in order to alloncae natural, predictable,
and smooth control.

The ability of the system to predict the intended motion efdiperator is evaluated,
and the whole system is analyzed during experiments witlateated exoskeleton.
Analysis of the experiments includes evaluation of the epapon between the human
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and the machine, and the unconscious human-machine ititeraiuring the move-
ments.

Finally, results from experiments with dynamic models asspnted. Those models
can be used to estimate joint torques to: (1) predict joigi@trajectories in advance
in order to integrate algorithms for postural stabilityda(2) to feed the calibration
algorithm with additional reference values which cannodliectly measured with the
exoskeleton.

In the presented approaches it is not necessary for thetopéoalearn a certain
language or gestures to use the interface. The system islewmtypintuitive. The
operator has to try to perform the movement, and the supptrb&vadded almost
instantly.

1.4 Overview of the Work

The work is organized as follows: Chapter 2 gives an ovenaéwther research
projects with exoskeleton devices, and describes aligedaiman-machine interfaces
implemented for those. It also summarizes achievements fine biomechanical and
biomedical communities that are utilized in this work. Cles@ gives the reader an
overview of the human body and the human locomotor systeohsammarizes the
process of movement generation from the initial desire &r#ésulting muscle con-
traction. It also explains origin and some properties of EM@hals and of human
muscle to motivate aspects that have to be considered aeddean implemented in
the body model. Chapter 4 describes the evaluation of the Elgals to recognize
the operator’s behavior, the subsequent computation gfatipction, and the control
of the actuator. During this evaluation, model parametersevealed that need to be
determined. The calibration of those parameters is predentchapter 5. Chapter 6
describes the mechanical construction, all sensors anguemhardware of the exo-
skeleton, before experiments are presented in chapteres. Siiow the calibration as
well as experiments performed with the actuated exoskeletad the system behavior
is analyzed and discussed. Chapter 8 describes an alteragproach to analyze the
intended movement of the operator with a dynamic rigid boadeh, and presents
a simplified model to investigate possibilities to obtainrenceference values for the
calibration algorithm.

This work is concluded in chapter 9 with a summary of the tssamhd an outlook
on possible future improvements.
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Exoskeletons that support a human operator in differekstase not a new topic of

interest for researchers around the world. Important sifienesearch started in the
1970’s where the group around Vukobratovic played a pior@er They had a clear

goal in mind to help patients with defects in their locomatpstem to regain walking

capabilities. At this time, lack of computer processor povweavy actuators (both
pneumatic and electrical), and heavy power supplies ldrie realization of interest-

ing theoretical results. But nevertheless, researchess ibeen far from discouraged,
and continued their work that led to interesting results $A30] as can be seen in
figure 2.1.

A large number of scientists have sticked tOgmms
upper limb devices with a focus on hand pros
thesis, because the required forces are rather lo
and helpful devices can also be constructed wit
a reduced degree of freedom.

In recent years, many exoskeleton projects
emerged due to increased performance of co
puters, actuators, and power supplies. Potenti:
applications that have occupied the minds of sci
entists and engineers for a long time seemed t
become realizable.

The mobility of the operator is becoming more
important, and due to the reduced size and weig
of the exoskeleton the operator can carry it in ad
dition to his or her own body. By that it can also
support existing muscles, in contrast to a prosthe-
sis that replaces missing limbs. Figure 2.1: Patient with pneumat-

Potential applications range from military unitdc €xoskeleton with torso.
to support soldiers in ground operations on one
side, over support for factory workers, pure entertainnavices to rehabilitation
aids and support for disabled or elderly people on the otlder #&\ good overview of
recent projects can be found in [Fer05].

But not only the mechanical part is an important field of resealf a lightweight
and powerful exoskeleton existed, there still remains tbélpm of how to control the
device. The interface between the operator and the exdsketeat least as important
as the mechanical construction, since misinterpretatitimodesired movement of the
operator can lead to injuries or worse.
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Different approaches to handle this problem exist, depwndn the field of appli-
cation of the exoskeleton. Generally, a good mixture of emxyand reliability of
detection, flexibility of the system and whether the oparhss to adapt to the system
or vice versa, has to be found.

In Section 2.1 exoskeletons from other research groupsem@ided together with
their control methods to summarize the state-of-the-attimarea. Section 2.2 sum-
marizes biomechanical models, some of them coupled to EMGats, in order to ana-
lyze behavior of the human body and effects of neurologigalies. From the wealth
of information that is available, regarding the origin andperties of EMG signals,
and of details about the mechanisms inside the human bodlytlorse sources are
selected that are related to this work. Results which haga heglized in this work are
explicitly referenced in the respective sections.

2.1 Exoskeleton Research Activities

In this section, exoskeleton research activities of othreugs are described. The
groups are presented in separate sections for clarity.ilDefahe information varies
greatly, depending on the published information.

Institute Mihailo Pupin, Yugoslavia: Exoskeleton Walking Aid

The primary goal of this research of Vukobratovic and calezs was to develop ex-
oskeletal devices that can be worn by patients with defiaitheir locomotor sys-
tem. Those devices were actively powered in the first vessigrnpneumatic actuators
(around 1970), and in later versions by electrical actgator

The first version had four actuated degrees of freedom (hibkaee joints, both
legs). The ankle joint was initially passive and actuated later revision. The air
supply for the actuators and the computer were both sepbitaie the exoskeleton
because of their heavy weight and large size.

Due to the low computational power of computers at that titmejoint angle trajec-
tories have been computed off-line and were replayed duhagxperimental trials.
No feedback from the patient or environment was incorpdtate

A full paraplegic patient unfortunately could not walk a¢owith this device. He
needed two people for support or a rolling aid to maintaimbed.

To allow incorporation of overall stability control, the@skeleton was extended in
1971 with a torso frame, adding two degrees of freedom toyktem (in the frontal
and sagittal plane). Software controllers were now resptafor moving the limbs
along the desired trajectories, and overall stability wasntained by computing sim-
plified correction terms with the zero moment point (ZMP).0$& correction terms
have been tailored to the task of walking on level ground.uAtbn of the trunk was
mainly used to maintain stability. Equipping the soles @& #xoskeleton with force
sensors allowed the incorporation of feedback from grogadtion forces to improve
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stability and safety. It allowed the patient to walk alonelyowith the aid of crutches,
as shown in figure 2.1.

* After performing many experiments it turned
out that the main drawback of the system was its
heavy weight of 1Kg (excluding air supply and
computer hardware). This could be reduced in a
new version to 1Rg by using state-of-the-art ac-
tuators. But limitations still remained because of
the air supply and large computer hardware: The
system was confined to indoor use in a clinical
environment.

A larger redesign of the exoskeleton led to a
16kg version with electrical actuation, that was
able to follow the trajectories more accurately
and more smoothly. Focusing on patients with
dystrophy in the hip and thigh muscles, the de-
gree of freedom was reduced, and the advent
of microprocessors resulted in a more compact
and completely portable version as shown in fig-
ure 2.2.

Controlling the different gait patterns was pos-
sible with different switches for (a) gait on level grountd) (ipstairs, and (c) down-
stairs. Gait pace, stride and turning to left or right wasuatjd with switches. The
gait cycle was always beginning with the left leg.

A 2kg battery allowed autonomous walking for 45 minutes on lewelugd or
"climbing 2-3 times the stairs to the third floofBSS90].

A good summary of the research and details of the controlnsehgas published
in [VBSS90].

Figure 2.2: Patient with the elec-
trical actuated exoskeleton.

University of Berkeley, USA: BLEEX

The BLEEX project is running for several years already arslfirally resulted in a
company called Berkeley ExoWorks.

The focus of the Berkeley Lower Extremity Exoskeleton (BREEproject is to
design and construct an exoskeleton for human strength entgtion. It should be
used by soldiers, firefighters, and disaster relief workersatry heavy loads faster
and over longer distances in outdoor environments thandwoaimally be possible.

Two versions of BLEEX currently exist. Some conceptual detzan be found for
version 1 (shown in image 2.3), whereas details of versiar 2eald secret because of
the U.S. military. BLEEX 1 consists of a metal frame that Isoddbackpack and two
exoskeletal legs. Actuation is performed at the hip, kne€, ankle joint in sagittal
plane, the remaining degrees of freedom in hip and ankle eamdwved passively.
Force sensors are attached under the soles of both feet.

11
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It is designed for autonomous operation by a small fuel engivat supplies the
onboard computer and the hydraulics with power [ZKCO05].

Since the desired field of application demands
a mechanically robust system, no sensors arg
used which are directly attached to the operato
to record biological signals. Furthermore there
are no sensors between the operator and the exc
skeleton measuring the interaction forces since
the points of contact between the two may be un-
known or changing and are hard to measure.

But nevertheless, the principle of the control
scheme is to minimize the interaction forces be-
tween the human and the machine: The machine
gets "out of the way" of the operator as quickly as
possible, not to hinder the movement. Since the
payload is attached to the exoskeleton, the opera
tor does not feel the weight of the load [Kaz05].

To achieve this, a model of the exoskeleton
was developed, and the inverse dynamics of this
model delivers the positive feedback for a closed
loop controller with a target value of zero. The
gain is set slightly smaller than@ to compen-
sate the major part of the weight and inertia ~ Figure 2.3: BLEEX 1.
of the exoskeleton. The operator has to move the remainimg grad his own
body [KHS05, KS06].

There are no algorithms implemented to control posturailgtato avoid unexpect-
ed forces acting on the operator. This has to be managed etatypby the operator,
requiring quick response of the system to operator imposaeement, so that coun-
terbalancing movement and reflexes can be performed.

Due to the sensitivity of the model to the payload recent dg@raents tend toward
a hybrid control method using a position controller and theelet based torque com-
pensation described above, depending on the phase ofgaitbéished in [KSHO6].

University of Michigan, USA: Powered Lower Limb Orthosis

The powered lower limb orthosis developed at the Universitfichigan aims at reha-
bilitation of patients with neurological injuries. Invegitions focus on consequences
for the patient (immediate and long term), changes in movefmehavior, and if cer-
tain simple control modes can be practically handled byepésgi

The lightweight actuated orthosis, shown in figure 2.4, &hallow more task spe-
cific training during gait rehabilitation by replacing exjgeve and strenuous manual
assistance from a therapist. Hopefully, this will help tstoee lost locomotion capa-

12
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bilities of patients more effectively, concerning the qtyadf progress, and will reduce
the costs of the whole process.

The orthosis is powered at the knee and ankle joint with edifpneumatic muscles
in sagittal plane. The air supply and the controller are nmimted on the exoskeleton.
Since it is mainly designed as a rehabilitation device in@adl environment, this is
not a severe restriction. A detailed description of desigth@nstruction can be found
in [FCHO5].

Three modes of operation have been investigated [SGFOg]fifldt mode utilizes a
foot switch and was used to study the mechanical performahttee orthosis during
ankle plantar flexioh This foot switch was mounted under the forefoot and maximal
ly activated the pneumatic ankle flexor muscle when the émetouched the ground.
When the forefoot lost ground contact during toe-off, thtéiaal muscle relaxed com-
pletely. Experiments showed that the artifical muscles \abte to produce a substan-
tial torque contribution to the movement.

The second mode used EMG signals of the
soleué as the controller input. The activation
of the pneumatic ankle plantar flexor muscle was
linearly related to the EMG signal of the mus-
cle. Experiments involved thirty minutes of walk-
ing for healthy people. At the beginning, people
could not benefit from the torque support offered
by the actuation. But after a couple of minutes
they could adapt their muscle activations proper-
ly, resulting in a kinematic gait pattern close to
normal. The amplitude of the recorded EMG sig-
nal was reduced to about 50%. This is an impor-
tant result, since it shows the capability of human
to selectively change the muscle activations in
walking to adapt to altered musculoskeletal me-
chanics. Figure 2.4: Powered Lower Limb

The third mode was tested with partially para@rthosis.
lyzed patients: A hand-held push button activated the aielfplantar flexor muscles
proportionally while elastic cords applied the necessargue to allow toe clearance
during swing phase. The torso was supported with a harnasseieved the patient
of 30-50% of the body weight. The push-button was either uoaoletrol of a therapist
or under control of the subject. Results revealed that sc@al gastrocnemidiscti-
vation was not decreased during both setups. For rehaiaititthis is a useful result
since the patient is not getting more passive as he or shesgpport from outside,

1The ankle performs plantar flexionwhen the forefoot is movingwayfrom the body, in contrast to
thedorsiflexion where the forefoot is pulletbwardsthe body.

2Ankle plantar flexor muscle in the back part of the calf, rumgnfirom just below the knee to the heel.

3Ankle plantar flexor muscle. Running in parallel to the ssleu
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which could hinder the rehabilitation progress. On the oftfaad, some patients could
not use the push-button because it required too much médfuael &ubjects that were
able to use it by themselves felt more comfortable being irtrob.

Yobotics Inc., USA: RoboKnee

RoboKnee is an exoskeleton developed by the company Yahatispin-off from the
Massachusetts Institute of Technology Leg Laboratoy fednd 2000.

The device is supporting the knee motion with
a series elastic actuator attached to the thigh ang
shank as shown in figure 2.5. The control system' -
calculates the actuator force based on the knegss
torque necessary for maintaining a statically sta-js
ble pose. This is performed by estimating the
ground reaction forces under both feet with two
load cells. From the actuator length the knee an
gle is derived. It is assumed that the ground re-
action forces are completely vertical and that the .
hip jointis located above the ankle joint. Through ~ Figure 2.5: RoboKnee.
inverse computation of the dynamics of this model the kne# jorque is computed
which is required to maintain a statically stable pose widhd¢urrent angular configu-
ration, even when the system is in motion. This knee torqueukiplied by a factor
that defines the support ratio of the actuation, resultindi@amount of support the
actuation is contributing to the motion [PKMCO04].

Depending on the difference between the torque requireddiotain a statically
stable pose computed through this very simple model andtijeé¢ actually required
to perform the desired movement, the muscle activatiorepathat successfully per-
forms the desired task with support can differ greatly frowapattern without support.
In some cases, for example when climbing down stairs ongitfiown, the user has
to actively work against the actuation or the amplificatiantbr must be set far be-
low 1.0, offering less support. If the ratio is rather small, a i@thn of the muscle
activation will be sufficient to perform the movement. A l@mgraining period can be
necessary during which the operator learns to work with xosleleton.

The next steps of development involve inclusion of hip anklemctuation and
better detection of the operator's movement intent.

""""

University of Tsukuba, Japan and Cyberdyne Systems: HAL

The Hybrid Assistive Leg (HAL) is developed in cooperatidntlee Japanese Uni-
versity of Tsukuba and the Cyberdyne Systems company. rBifteorototypes of the
mechanical construction exist, of which two are shown inrégR.6. Motivated by

the rapidly aging — but technology-loving — society in Japiie project focuses on
supporting elderly and gait disordered people.

14
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During the course of the project, different control strédsghave been developed
with the primary interface being EMG signals from the operatmuscles. Early
prototypes consisted of a system with four actuated jointseahip and knee of both
legs, with passive joints at the ankles. The latest devedpfHAL 5) also includes
actuated shoulder and elbow joints, as shown in figure 2.6.

The first published control strategy for HAL is
the "phase sequence algorithm" that was demon-
strated for the stepping-up motion [KS01]. In this
approach the stepping-up movement is subdivid- i
ed into five phases which are handled by a state- sk
machine: leg raising, stepping up, leaning for-
ward, hind leg raising, torso erection. Transition
to the next state is performed when the joint an-
gles and the center of gravity measured beneath
both feet meet certain criteria. Each phase has
an associated predefined trajectory for all actu-
ated joints. The EMG signal is picked up fronFigure 2.6: Hybrid Assistive Leg
the rectus femorfto initiate the movement. Af- (HAL): version 3 (left) and ver-
ter reading an increased muscle activity, the EM&on 5 (right).
signal is evaluated for 300ms and the numerically
integrated postprocessed EMG signal is converted ihiip angleby a linear relation-
ship that was calibrated before. This angle is used as tleeerafe for the position
controller of the system. After the 300ms interval the statehine can decide the
transition based on the angle measurements, and predefajectdries are used for
the rest of the movement.

An improved version of this control structure with an exteddtate machine incor-
porating standing up, sitting down and walking can be foumfKS03].

But this control scheme lacks flexibility and was replacethwiewer versions of
HAL [KS02b]: Four muscles responsible for flexion and extensn the hip and knee
joints have been recorded, and support torques for thetamtua those joints have
been computed in linear relation to the postprocessed EMiGaki The parameters of
this relationship have been calibrated by the followingipehe operator was sitting
upright on a chair without ground contact below the knee dmyathe hip. The actu-
ators produced varying torques from ONm to 32Nm in 8Nm stejsle the operator
countered the torque with his own muscles and tried to miaitie upright position.
The postprocessed EMG signal was then related to the torfgine @ctuators. The
estimated torques based on the EMG measurements are udesl tasget values of
the control algorithm. To remove discomfort for the operdhat was observed dur-
ing experiments, the torque estimation had been modified:hijn torque calculation
neglects the hip flexor activity during floor contact with tlespective leg while walk-
ing, to make the system response more comfortable. Theistang movement uses a
feedforward controller with four phases: (1) sitting, (&) fiexion and knee extension,
(3) hip and knee extension, (3) standing. During phasesnd.)4) the controller out-

4The rectus femoris is a knee extensor muscle.
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put is ONm for all joints, during (2) and (3ixedtorques are used for each joint in each
phase £20Nm depending on direction of movement). State transstame performed
when floor reaction forces and joint angles meet certaiertafKS02a].

To further improve the performance of the system, the eXetke is modelled
through an inverted pendulum with gravity, inertia, andtwiss friction. A compensa-
tion term is added to the supporting torque to regulate tive jmmpedance [LS02a,
HKSO05, LS02b]. Other small variances of the control schemmas be found
in [LS03,KS04]

In figure 2.6 (right side) the latest development, HAL-5,iswn. Unfortunately no
details have been published so far.

Kanagawa Institute of Technology, Japan: Power Assisting S uit

Researchers of the Kanagawa Institute of Technology havel@l®ed an exoskeleton
for assisting nursing personnel when handling patientshas/n in figure 2.7.

The suit covers shoulders, arms, torso, waist
and both legs, weighting a total of 30kg. It sup-
ports the operator at the elbows, waist and knees
with pneumatic actuators.

The controller structure calculates the joint
torques required to maintain a statically sta-
ble pose by computing the inverse of a rigid
body model that takes into account the current,
joint angles and masses of the components of
the exoskeleton and the weight of the patient.
The weight of the patient is measured before-|
hand [YINHO4].

The operator’s own muscle force is recorded |
by muscle hardness sensors which consist of min
load cells with contact plates taped to the skin sit- =
ting on top of the muscle bellies, and will proba- |
bly be integrated into the control in later versions.

Interaction with the exoskeleton is based ohigure 2.7: Exoskeleton to sup-
the fact that the torques imposed by the opergort nurses while carrying pa-
tor on the joints of the exoskeleton overlay witiients.
the torques produced by the actuators, similar to the RobeKArbitrary movement
patterns are possible, although not necessarily intiytasefirst: Depending on the ac-
curacy of the inverse calculation and the effects of the hidlynamics of the system,
necessary muscle activations to move in concert with thelesteton and the load can
be very different from the intuitive activation patternsartlling the patient with the
exoskeleton may require some training.
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Nanyang Technological University, Singapore: NTU Exoskel eton

The exoskeleton developed at the Nanyang Technologicaleisity is designed for
performance augmentation of healthy people, like infastiigiers or emergency per-
sonnel. It should allow the operator to carry heavy loadgefasnd over longer dis-
tances compared to normal conditions.

In contrast to more traditional exoskeletons, the NTU ertetion does not embrace
the operator at the legs, except for some sensors to reashtjomt angles. Instead,
it features two actuated legs which hold a payload frame tl@aperator is standing
only on the footplates of the exoskeleton, as shown in figu8e 2he exoskeleton is
completely carrying itself and the payload, and is agydedby the operator.

The idea of the control scheme is to follow the -
trajectory of the operator’s foot with its own foot- |
plate during the swing phase of each leg. Thisj
allows the operator to provide information about
the desired velocity and stride length of gait. The
required information is taken from the operator’s
joint angles, and not from contact forces betweenf=
the exoskeleton and the human. '

In theory, one would expect it to be difficulty ")
to perform a target motion with the foot, while »
being rigidly attached to the footplate of the exo-
skeleton that should follow the motion. Unfortu-
nately, it is not mentioned in the publications how
this problem is solved.

The exoskeleton maintains balance during the
motion by utilizing the concept of the ZMP: The
controller moves the actuated joints in such a way
that the ZMP remains within the support region.
The support region is defined as the footprint, if
only one foot touches the ground, otherwise it
is defined as the convex area encompassing bot
footprints. Modification of the ZMP by the controller is permed by changing the
angle of the exoskeleton "trunk”, which is the payload fraifiee target ZMP the con-
troller tries to follow is the ZMP measured from the humanyatbne. The ground
reaction forces for computation of the ZMP are measuredfeitte sensors embedded
in the feet of the exoskeleton [LLY, LLO4].

ﬁigure 2.8: NTU exoskeleton.

Tohoku University, Japan: Wearable Walking Helper

The Wearable Walking Helper (WWH) of the Tohoku UniversifyJapan is a lower
extremity exoskeleton, covering both legs. The hip andeajiihts are both actuated
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in sagittal plane with a rotatory actuator in the hip jointdaa long linear actuator
connecting the hip and ankle to actuate the knee joint.

The goal of the WWH is to support the opera- o
tor during walking and standing by compensating ""“‘ﬁﬁiﬁ?&“&’.&R
some of the body weight. The required support is ' g Dl Hinga Jaint
calculated by an inverse model without taking in- =i 3
to account joint angle accelerations [NSWKO05a]. =55 - || '8
Joint angles of the hip, knee and ankle are mea- i
sured and fed into a planar model of the operator
consisting of a four link open chain. The setup |~ ;
used for the experiments involved only one actu- mes
ated leg, the other was not regarded. e o Suvert W

The support can be adjusted and is calculated -
through the torque required to maintain a staticakijgure 2.9: Anti-gravity system.
ly stable pose multiplied by a gain. In the experi-
ments presented in [NSWKO05a] the gain was set betwdearid 05 for the knee and
hip joints.

Experiments performed with the exoskeleton showed thadutdcadd support to
the knee extension task. This was tested by standing on aheaiod measuring the
force acting on a sensor installed between the non-supgdidot and the floor while
maximally activating the knee extensor muscles. A secoperxent showed that it
was possible to perform significantly more knee bends whesulpport was activated.

The control method was improved in [NSK05], taking into aogbground reac-
tion forces with force sensors to support walking. The systeas investigated with
stepping up and down, and while walking on a treadmill. Thaistwas measured
through the heartbeat of the subject, and was shown to beeddin [NSWKO05b] the
system was enhanced with dynamic terms, and experimentgletthe sit-to-stand
and stand-to-sit movement without taking into account rexetiecontact forces from
the chair. The experiments showed a significant decreasasuolmactivation revealed
by EMG signals.

University of Washington, USA: Arm Exoskeleton

This project is now homed in the BioRobotics Laboratory @& tniversity of Wash-
ington. Early work has been performed by Roseml. in the Tel Aviv University in
Israel. The exoskeleton consists of one arm with actuatedldar and elbow joints
with one degree of freedom each, and is attached to the wsti@sn in figure 2.10.

It is one of the rare projects that utilizes EMG signals imaiksir fashion as the work
presented here: by feeding them into a complex body modelltuiate the resulting
joint moment which is used by a torque controller.

In early work of this group a Hill-type muscle model [Hil38ji@0b] was compared
to a neural network, utilized to predict the joint momentBAR9] during elbow flexion
and extension tasks while holding a load. It showed a sldbetter performance of
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the neural network approach. It has been assumed that thal meiwork adapted

itself better to the specific circumstances, namely the aaskoperator, but would not
be able to perform so well in previously untrained movemestéshe more general
Hill-type muscle model. The Hill-type model did not containy parameters that had
been calibrated prior to the prediction experiments, asata the normalization of the

EMG signals to a maximum value, recorded during maximummalty contraction.

Those experiments led to the the EMG-
controlled arm exoskeleton presented in [RB-
FAO1] and shown in figure 2.10. The experi-
ments involved lifting a weight by flexion and
extension of the elbow joint in cooperation with
the rotatory actuation of the exoskeleton. The
actuator supported the movement with additional
torque, based on the estimation of the operator’s
own torque contribution from the EMG signals
multiplied by a support ratio.

A parameter optimization of the EMG process-
ing algorithm was presented for an improved ver-
sion of the model in [CRPO5] and is based on a
Figure 2.10: EMG controlled 9enetic optimization algorithm.
arm. Latest developments in this project include the

analysis of kinematic and dynamic data of daily
actions [RPM 05] to design a seven degree of freedom exoskeleton arm [PR06

The biomechanical model developed for this arm exoskeldiffers in some as-
pects to the model presented in this work: It is more compéex] contains more
properties and parameters, and details of the modelingiteestht. Those details can
be found in [RFA99, CRP05] for comparison. Furthermore, the calibration algarith
as a whole is different from the approach presented in thikwo

Upper Extremity Exoskeletons

Surveying the literature reveals that most of the reseatitizing EMG signals to
control a robotic device is performed on the upper extrasitith focus on extend-
ing limbs of amputees, like replacing the hand [ZKWBH95, IPK, HG02, FTKOO03,
KOT92], and, in more recent years, to support rehabilitatla those scenarios, classi-
fying the recorded signals into specific patterns which alated to predefined move-
ments is a well accepted approach. Classification has bermped with a variety
of different methods, for example, with fuzzy rules for nifuibctional hand pros-
theses [AWO05, CY[-00], and with neural networks [CMMO05, HC99, KOT92, AK0O,
KYNKO04,NKYKO03]. In [Whe03] evaluation of the signals wasni@med with a Hid-
den Markov Model.

A recent example of EMG evaluation to control an actuateditwathosis has been
published in [MFGO5]. There, EMG signals have been evatlatatinuously with a
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moving average filter, and have been compared to a predefineshbld. When the
threshold is exceeded, a preset hand closing motion wasrpestl. Upon relaxation
of the muscles the hand was opened again.

In [DLMO04] a handexoskeleton with pneumatic actuators ssae with three differ-
ent control schemes to restore dexterity of completelylpaed hands: (a) threshold-
based binary on/off control, (b) control signal is set pmbjomal to EMG activity, (c)
evaluation of the EMG signal of the biceps muscle activatedng a reaching task,
and learning the timing of this muscle’s activation in relatto the pinch operation in
the "reach and pinch"-task. In cases (a) and (b) the EMG Edrave been record-
ed from muscles of the contralateral side, whereas in (cgugapn muscles from the
same side as the paralyzed hand have been used.

In [AABO5] a forearm exoskeleton for rotation around thesaaf the forearm is
controlled by mapping the muscle activation linear to thhgehangle, if the activation
exceeds a certain threshold.

An EMG-based shoulder exoskeleton with two degrees of et presented
in [KIY T03]. EMG evaluation is performed with a combination of fuzmjes and
a neural network to take into account the displacement otctassn different shoul-
der configurations.

Other exoskeleton devices for shoulder, arm, and lower bapkort can be found
in [KET 03, KS05, NNH 98, KLLKO05, TC03, NKYKO3].

2.2 Biomechanical Models

For the lower extremities, pattern classification and ngptapredefined trajectories is
not possible if the system should permit the operator ta teatifferent circumstances
in a natural environment, including obstacles, floor inafian, and steps. The EMG
signals have to be evaluated in more detail, either by tngiai more complex black
box, or by implementing a body model where the desired matzmbe read from the
model behavior. As a matter of fact, the question of compyexdi the model arises.

Such models have been developed by researchers with a lhianieal or biomed-
ical background [ZW90]. They have been mostly used for thdysbn the locomotor
system of the human body to investigate how neurologicaldgggenerate movement,
how this movement is controlled and how diseases affeciot@hotor system. They
allow, besides a detailed analysis of the operator’s irganan interesting and deep in-
sight into the behavior of the human locomotor system. The/tdack of such models
is the potentially large number of parameters that need edpested. But in contrast
to the black box models where those parameters have to beetbarith a large set
of training data, many parameters can be identified by explieasurement or can be
approximated by constant values found in the literaturenfpwevious experiments.

But still, it is very easy to drown in the great number of distacientists have found
out. In [Hat81] for example, chemical processes of the neubkrs are modelled to
explain muscle contraction in great detail.
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2.2 Biomechanical Models

A good overview and comparison of different models, for eglanthe molecular
level versus the macroscopic level, can be found in [Zah908][SBHRO0O, BD85]
different aspects are summarized that can affect the gtiginsmission and recording
of EMG signals. Important work describing properties of slasnd tendon on a very
useful level is published in [Zaj89].

A very important and popular biomechanical model of the hutoaver extremities
has been published in [DLFDO]. Itis in part a collection of anatomical data presented
in previous work by other researchers, but it also contaave and important data of
tendon pathways defined by wrapping points that are apptiezitain intervals of
joint angles. Those waypoints are needed for accurate nmgded skeletal muscles
considering different joint angles, and to compute momemisaand resulting joint
torques. Previous work mostly reported only points of arigind insertion of muscles
measured from cadavers. The background of this researctowasulate how ortho-
pedic surgeries affect muscle forces and torques arountsjoFigure 2.11 shows a
screenshot of the simulation software.

Modeling the behavior of individual
muscles is frequently performed through
Hill-type muscle models. Those mod-
els are describing the behavior of mus-
cles with data recorded from observation
during experiments (phenomenological
models), not from their internal process-
es. They incorporate a contractile force
producing element, and parallel and se-
ries viscoelastic elements modeling the
passive properties of the tissue. A good.
overview and analysis of those modeIE_Igure _ 2.11: ~ Screenshot from the
can be found in [Hil38, Win90b]. §|mulat|3n software SIMM, presented

In recent years modern versions of thi! [DLH™90].

Hill-type model have also been used to analyse human movewién respect to
the neural commands that activate the muscles. Resultssateta gain knowledge
about strategies of muscle activation during locomotiore(l8] and finger move-
ment [MA04], or effects of injury and disease [MGLBO02]. Thmplementation of
a detailed muscle model to be used for a reliable controdefifnctional electrical
stimulation is described in [BCLOOQ].

Such combination of EMG evaluation and muscle models haga developed for
the lower back, elbow, shoulder, knee, and ankle joints. édgmompilation of refer-
ences can be found in [LBO3]. All those models require tranfsfnctions which relate
neural activation, measured through the EMG, to muscleatain, and muscle acti-
vation to muscle force. Different EMG to muscle activatiamdtions are suggested
in for example [Zaj89, LB03, MB03], and different relatidngs have been observed
during experiments with individual muscles [BD85].

An improved version of the lower extremity model [LB96] watdimed in [LBO3],
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where the knee torque was estimated based on EMG readindjfféoent tasks includ-
ing isokinetic dynamometer trials (active and passive dief@xtension under different
loads and different velocities), running, crossing andiegtsteps. The body model
in this work consists of 13 lower leg muscles, some of whichl@¢mot be measured
directly. Parameter optimization was performed with iseedynamics, fed with limb
joint kinematic data that was recorded with a 3D-vision eyst The data processing
was performed offline, and the system was not utilized torobat device. Instead,
it demonstrated the validity of the model. During caliboati the parameter set was
subdivided into EMG-related parameters and geometry petersm The EMG-related
parameters are sensitive to electrode placement, skiregrep and the overall con-
dition of the subject and have to be recalibrated for evepeerental session. The
second group needed only to be calibrated once for evergsiilifepeated trials with
weeks in-between showed that it was indeed sufficient tdibeate the EMG-related
parameters, further increasing the trust in the model. Thamresidual prediction
error was about 12Nm.

In [MGLBO02] a virtual arm controlled with EMG signals is pesged. The aim of
this study was investigation of neuromuscular control of amovements. A biome-
chanical model for the human arm was developed, incorpwatil major muscles
spanning the elbow. The joint torque estimation was baserkoorded EMG sig-
nals. During the experiments the subject’s monitored ars fixed and hidden from
observation. The only visual feedback was provided throaiglomputer generated
3D-visualization of the arm movement as predicted by a satit using the estimat-
ed torque. With those experiments muscle synergies andlenastivation strategies
have been examined. In a second experiment, change in nagislation patterns in
response to a simulated neurological injury was invesdat

Several other projects also investigated teleoperatiadh WMG signal evalua-
tion [AK05, AK06, FTKO03, FWB"96].

Another recent development uses two different ankle moatetsontrol an ankle
foot prosthesis: The first model utilizes a two-dimensiahaiamic ankle model in
sagittal plane with passive damping, stiffness, and thesfaelocity property being
modelled. The second method uses a neural network to ptediatsulting ankle posi-
tion from the EMG signals. Experiments were performed wiblebbw knee amputee,
whose residual muscle activity from muscles moving the arn&int was recorded
with fine-wire electrodes. The subject was standing on dgstatthat could imitate
an ankle foot prosthesis, and was asked to perform ankle mewes with the residual
muscles from the affected leg. This resulted in movemente®fplatform. Analy-
sis of the experiments revealed that the muscle model tuwyoetb be superior to the
neural network prediction in terms of producing smoothet arore natural trajecto-
ries [ABHO5].

5The force a muscle can produce is depending on the lengtlyelser unit of time. This is explained
in section 3.2.
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2.3 Remarks

The previous sections have given an overview of researgeqisowith exoskeletons
and evaluation of EMG signals. Two main observation can béema

» Control strategies without EMG signals are mainly emptbytaere mechanical-
ly robust and reliable system behavior in unstructuredrenvnent is required,
or where ease of application is needed. EMG-based congolitims are main-
ly used in medical applications because of the supervisadogrment, or where
simplified, delayed and fault-tolerant signal evaluat®passible, for example,
for a hand prosthesis with a limited degree of freedom.

» Applications where EMG signals are utilized in a more elab®fashion are de-
veloped with a biomechanical or biomedical background hgdor offline anal-
ysis to study behavior of the human body. Systems origigdtom robotics re-
search groups are lacking sophisticated EMG-based modhéthvwan improve
the system behavior.

Unfortunately there seems to be a big gap between the rebasearch groups
and the biomechanical/biomedical groups. Interestingiamubrtant results achieved
in the latter two groups are not wide-spread in the robotmamunity, although the
integration of recent findings can considerably improve gegormance. One rare
exception is presented in [RBFAO1], where sophisticatedEd¥aluation is applied
to an exoskeleton system.

The reason for this may lie in the complexity of the unfamit@pic which needs to
be reduced to a practical level. Simplification of those ni®deeds to be performed to
keep the number of parameters and the computational coityplexeasonable limits.
This work tries to close the gap a little by applying resultsi the biomechanical and
biomedical communities to a robotics system.
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3 Biomechanics of the Human
Body

The use of EMG signals has been motivated as the main way afmation trans-
portation between the human operator and the exoskelegattion 1.1. This chapter
describes the processes in the human body from the thoutte brain to the resulting
muscle activations and reflex actions during which EMG digjaee generated.

The body functions described in the following sections akdvonly for healthy
persons, and only aspects which are directly related toatbrk and the implemented
human body model are described. The level of detail is lidhitethe basics but ex-
plains the origin of modelled properties and gives insight the simplifications that
have been applied during development of the model. All digsons refer to skeletal
muscles. More detailed descriptions can be found in [KSg8P88, Jea90].

The following section 3.1 describes the way a thought orxeflgiates a motion, to
give the reader an overview of the neural information flonhtbody and the resulting
motion. Section 3.2 focuses on muscle properties and howe fer generated in a
more detailed way. Section 3.3 describes origin and cheniatits of EMG signals.
Section 3.4 gives some remarks on modeling in the light afplaiticular application.

3.1 From the Brain to the Muscles

The motor system of the human body is responsible for tramséeneural signals to
physical energy: A thought initiates a motion. But not onbnscious brain activity,
but also input from the sensor system of the human body cdiatsmimovements.
During reflexes physical energy is converted into neuralagwhich in turn stimulate
muscles without going through the brain.

According to [KSea95], movements can be divided into thisegories depending
on the influence of voluntary control:

» Reflex responsesre the simplest form of motor behavior. Examples are the
withdrawal of the hand from a hot object, the knee jerk or faveihg. Reflexes
are rapid, stereotyped responses and can be performedutvihg voluntary
control, although they can be modified with conscious effort

* Rhythmic motor patterns are typically initiated and terminated voluntarily, but
in-between no conscious effort to maintain the repetitieement is necessatry,
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3 Biomechanics of the Human Body

although it can be adapted to certain circumstances. Examnfpt this type of
movement are walking, running, or swimming.

» Voluntary movementsare the most complex movements, like playing an instru-
ment and driving a car. Those movements are goal directedaanbde improved
with practice. The better those movements have been leaimekkss conscious
effort they require.

According to the different levels of voluntary influence omavement, the human
motor system can be divided into three levels of motor coyaishown in figure 3.1:
the spinal cord the brain stemand themotor cortex Those levels are organized hi-
erarchical and in parallel with the spinal cord being thedestMevel: Reflexes and
rhythmic motor patterns have local circuits which are optad for quick responses.
The brain stem is the next level of control and is divided imio parts: (1) the medial
systems which are mainly responsible for controlling thdybposture by integrating
information from the eyes and the balance system, (2) tieedbsystems, which are
connected to distal muscles of the limbs, like arms and hdaa®ntrol goal-directed
movements. The motor cortex is the highest level of contiith the highest layer of
abstraction. It is responsible for coordinating and plagrecomplex movements. To
perform this, it is connected to the cerebellum and the bgaadjlia. During a vol-
untary movement, the cerebellum compares the actual movetim®ugh responses
from the sensory systems to the desired movement, and tothecmovement if nec-
essary. The output to the cerebral cortex is excitatorgatimg movements. The basal
ganglia, on the other hand, works inhibitory on the ceretoaiex, surpressing certain
movements, to allow others to be performed. The basal gaagll the cerebellum are
connected to the motor cortex via the thalamus, a relayostati

The hierarchical structure of the control system ensum@ssimpler movements can
be performed without conscious effort. But through the addal parallel neural path-
ways it is possible for higher levels to modulate lower leviel adapt the movement
to special circumstances, for example, changing the siuigth or stepping over an
obstacle.

In addition to the neural commands from the higher levelsyyelevel is fed with
sensory information that is needed for appropriate confrbére is a permanent flow
of information about position and orientation of the bodwhis, the degree of muscle
contraction, and information about events in the enviromitierough the skin or eyes.

All pathways from the different control levels are connéatecomplex networks of
interneurons in the spinal cord. They are ultimately cogiveyinto common pathways
that lead to the motor neurons which innervate the musclessd motor neurons are
situated in the spinal cord and connect to the skeletal ragdxt axons (nerve fibers).

The signals (action potentials) sent over the axons to thexhasilead to contraction
of muscle fibers, shortening the muscle. Since every musclerinected to the human
skeleton at at least two points spanning one or more jolmsshortening of the muscle
creates a torque in those joints. If the torque is large enoaignotion is performed.
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Other
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Muscles contraction
and movement

Figure 3.1: Motor system of the human body. The motor areas of the cdretrizx
are responsible for complex voluntary movements, passingal signals to the lower
levels of the hierarchy: the brain stem and spinal cord. &hdrythmic movement
patterns and reflex responses are generated, which can héateadfrom the higher
levels through the parallel pathways. The cerebellum igamsible for correcting the
current movement to resemble the desired movement (refdretdext for details).
Adapted from [KSea95].

Details on the control of human walking is still a matter ofremt research. A recent
review on this topic can be found, for example, in [Nie03, ES&].

3.2 Muscle Physiology

The purpose of muscles is to generate force between two entspather actively
through contraction or passively through their resistancdretch.

The muscle belly is connected to the bones or other muscfesirats callecbrigin®
andinsertior? by tendons. Muscles and tendon are surrounded by conndisthue
holding them together and separating them from their neididnd. They also allow
the muscle to slide inside this hull during movement, andigut along a predefined
path preventing displacement to the side [UhI96].

The muscle belly itself is composed of muscle fibers that aoeiged intofasci-
cles(muscle fiber bundles) as shown in figure 3.2. Those fibers aae & length of
approximately 15cm and a diameter betweeprhCand 10@m in human.

Each fiber is composed of so-called myofibrils: tightly patki#aments that go
from one end of the muscle to the other. Those myofibrils axetmtractile elements
of muscle and have a diameter of approximatelyrl

Each myofibril is in turn further subdivided into a chain of@mneres, the smallest
contractile elements of a muscle. Those sarcomeres haslerbealls called-linesto

IProximal (closer to the center of the body) point of attachihed the muscle to the bone.
“Distal (farther away from the center of the body) point ofattment of the muscle to the bone.
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3 Biomechanics of the Human Body

which thin strands of actin filaments are attached. The nitgtdetween those z-lines
is approximately 2m to 3um, depending on the level of contraction of the sarcomere.
Located between those actin filaments are the myosin filaanent

When a muscle is activated, a bio-
chemical process lets the actin filaments
glide deeper between the myosin fila-
ments (cross-bridge binding), so that
the overlapping region increases. Since
the actin filaments are attached to the
z-lines, the distance between those
z-lines is decreased. The sarcomere
shortens, and so does the whole mus-
cle. A sarcomere can shorten to aboUtsssg
57% [BD85] of its rest length. It cannot
actively increase its length again. This
can only be achieved through forces
from outside, for example, through con- P e 2
traction of antagonigtmuscles. Ny

The force a sarcomere can produce .~
depends on its length, that is, the dis-
tance between the z-lines: The longer
the sarcomere, the smaller is the over-
lapping region of the actin and myosin 2.~ , A
filaments, and the smaller is the result-z-membrane -inesyyosin fiaments  z-membrane (z-iines)
ing force. If the sarcomere gets shorter sarcomere

on the other hand, filaments start to i”Figure 3.2: Components of the human
terfere, resulting in a smaller fprce. INmuscle: The upper images show the whole
between an optimal length exists. Expyscle that is composed of muscle fiber
trapolating this for the whole muscle reqngies which are arranged in parallel.
sults in a force-length relationship thagach muscle fiber bundle in turn consists
has a maximum at theptimal mus- of myscle fibers, which are composed of a
cle fiber lengthand declines in both chajn of sarcomeres. During muscle acti-
directions as shown in figure 3.3, lefation, a biochemical process increases the
side [GHJ66, DLH 90]. _ overlapping region of the actin and myosin
At a length above the optimal mustjiaments and pulls the z-membranes closer

cle fiber length, a passive force appeagggether, which results in muscle contrac-
and steadily increases with length. Thiggp, (adapted from [UNI96)).

force is a result of the elasticity of my-
ofibrils [Zaj89].

Furthermore it has been observed, that the optimal musabe fémgth for the
active force-length curve decreases with an increase otlewastivation by about
15% [BLMBO4].

The muscle force is also influenced by the change of lengtheof time (muscle

3Antagonists act in opposition of the agonist muscle, whictinty creates the movement.
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Figure 3.3: Muscle force relationships: (left) muscle force as a fumctof the

length of the muscle fibers, normalized to optimum muscle fdragth, (right) muscle

force depends on the muscle velocity, normalized to maximumacle velocity (data

from [DLH"90]).

velocity). During lengthening of the muscle, the sarconferee is increased mainly
due to stretch of elastic elements. During shortening omther hand, the sarcomere
force decreases to zero in a hyperbolic fashion. This is éilse because the filament
movement of actin and myosin that leads to contraction igpaated process of bind-
ing and detachment with a limited frequency: the crossdaridycling. If the muscle
shortens very fast (negative velocity, for example, duextereal forces) the cross-
bridge cycling is not fast enough to produce any force whilertening the muscle.
Looking at the muscle as a whole, this introduces a forceeil relationship of the
muscle as shown in figure 3.3, right side. It is usually norneal to the maximum con-
traction velocity of muscle, which can be approximated tigtoten times the optimal
muscle fiber length per second [Zaj89]. More details of thgioof the force-length
and force-velocity relationships can be found, for examipl/Nin90a].

Depending on the task the muscle is mainly involved in, tlaeeedifferences in the
macroscopic arrangement of muscle fibers: The more musdesfdre working in
parallel, the stronger a muscle is. The longer the muscle, fibe more sarcomeres
are linked in series, and the faster the contraction can ben@ specific volume for
a skeletal muscle, the arrangement of fascicles is optongeshown in figure 3.4:
When a large force production is required, the fasciclesaar@nged in parallel and
at an angle to the direction of pull. This puts more fibers irafp@l within the same
volume by sacrificing a larger range of contraction. Thosecatas are callegennate
musclegMar98, Uhl96]. The angle between the fascicles and thectioe of pull
along the tendon is callggennation angleThis angle is not fixed but varies with the
contraction of the muscle as depicted in figure 3.4e.

A measure for the strength of the muscle is pigsiological cross-sectional area
(PCA) of a muscle that takes into account the number of sagcesnn parallel with
the angle of pull of the muscle. According to [MWW83], theatbnship between
cross-sectional area of a muscle and its maximum forceeasuinThe PCA is defined
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Figure 3.4: lllustration of different muscle structures (adapted frijghl96]). Fig-
ure e) shows the change of the pennation angle in unipennaeles through muscle
contraction.

according to [Win90a] as:
(3.1)

with the pennation angleg, the mass of the muscle fibers, the density of the mus-

cles,p ~ 1.056g/cn?, and the length of the musclds,%PCA is the cross-sectional
area as a percentage of the total cross-sectional areanafistles crossing a particular
joint. Table 3.1 shows details for some muscles crossingiiee joint.

Muscle PCA [cn?] | @ [°] | %PCA | Fyax[N]
Gastrocnemius 30.0 15 19 1605
Biceps Femoris (small 6.8 23 3 400
Biceps Femoris (long) 15.8 0 7 720
Semitendinosus 4.4 0 3 330
Semimembranosus 22.6* 15 10 1030
Vastus Lateralis 30.0 5 20 1870
Vastus Medialis 26.0 5 15 1295
Vastus Intermedius 25.0 5 13 1235
Rectus Femoris 12.5 5 8 780
Sartorius 1.9 0 1 105
Gracilis 7.5* 3 1 110

Table 3.1: Examples of muscle parameters with physiological crosties®al area,
PCA, pennation angleg,, and maximum forcehyax. Data was taken from [Win90a],
except values marked with which have been derived from their %PCA-values.

The motor system can measure the actual muscle length amdtyehrough muscle
spindles which are integrated in the muscles and tendores dite linked to the spinal
cord by nerve fibers to give feedback to the motor system [6)iHSea95].
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3.3 Muscle Activation and Electromyography

Muscle contraction is a response to signals originatinghftbe so calledx-motor
neurons sitting in the spinal cord or brain stem. Those neunveate an electrical
impulse that travels along axons with a velocity of 50-90[@885] to the motor
endplates (neuromuscular junctions) sitting on top of thuscte fibers, usually near
the middle or proximal to the middle [BD85]. Axons branch dref they reach the
fibers, so that evergr-motor neuron can be connected to a number of muscle fibers
ranging from as low as 10 for eye muscles, about 100 for mssol¢he hand, and
to about 2000 in leg muscles [KSea95]. The lower the numbénradrvated muscle
fibers, the more fine grained the control of the muscle adtimatan be performed by
the nervous system. But every muscle fiber is only contrdbea singlea-motor
neuron.

The a-motor neuron, together with the axon, motor endplate, hadruscle fibers
that belong to this motor neuron are callechator unit[BD85].

The action potential that is transmitted to the motor enéglaitiates a biochemical
process inside the junction to the muscle fiber, the synapskjn the synaptic cleft
between the synapse and the muscle fiber membrane (podisynambrane). If the
resulting depolarization at the postsynaptic membraneeads a certain threshold, a
single muscle fiber action potential is generated that lsaleng the muscle fiber with
a velocity of 3—6m/s [BD85] to excite all sarcomeres. Thedgto contraction of the
sarcomeres and to a single twitch. To achieVerger periodof contraction, a series
of action potentials has to be generated by the motor neararotor unit action po-
tential train. Since a motor unit can perform only an all-or-nothing aation of the
muscle fiber (the strength of a twitch cannot be modulatédjstrengthof contraction
depends on the number of recruited motor units, that is, theber of motor neu-
rons that produce an action potential at the same time. @lpieveaker motor units,
innervating less muscle fibers, are recruited first if pregreely increasing force is
required [KSea95]. In general, motor units are firing in ad@n pattern and are not
synchronized.

Studies on single motor units revealed that one stimulgiidee creates a single
twitch response from the muscle. With increasing frequeoicyhose pulses, the
twitches start to merge and the force production of the neusetomes continuous and
increases. When the stimulation frequency is further exed, the twitches come clos-
er to a permanent maximum contraction of the muscle at whaaht mo further force
can be generated. If this contraction is performed volyntao reflex, no spasm) it is
calledmaximum voluntary contractiofm he relationship between neural activation and
force production is described of being linear, exponewtiddgarithmic, depending on
the muscle. Results of various investigations can be fonfdD85, MB03, PNM96].

During the depolarization of the postsynaptic membrane ni@vement causes an
electromagnetic field in the vicinity of the muscle fiberstthaerlays with fields of
fibers from other motor units which are intermingled witHue tmuscle. The resulting
sum of all fields is called the electromyographic signal @f thotor units and can be
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Figure 3.5: Example of a raw EMG signal as delivered by a surface eleetrod
The electrode has an in-built bandpass of 20-450Hz and alfemgith a gain of
1000V/V. Diagram (a) shows a series of muscle contractidiagram (b) shows the
magnification of an interval of the same data.

directly measured invasively with needle electrodes oropnaf the skin with surface
electrodes. Example data is shown in figure 3.5.

Unfortunately, measured EMG signals are not always exalysirom the muscle
below the electrode. Due to the conductivity of tissue and, signals from neighbor-
ing muscles can interfere with the muscle under observation

On their way to the electrodes EMG signals are modified thindutgring charac-
teristics of the tissue it passes and, in case of surfacéeliss, the characteristics of
the connection between the skin and the electrode. Thoagsdetll not be addressed
here. An introduction to this topic can be found in [BD85].

The time between the emission and detection of the EMG sicgralbe neglect-
ed in the context of this work. But there is also a time betwesenssion and force
production. This time, called thelectromechanical delays reported to be about 50—
80ms [CK79,ZLMF95, VMIS90], mainly due to low muscle fibemztuction velocity
and the chemical processes which lead to contraction. divalthe signal evaluation
process to starbeforethe force production begins, reducing the latency of cdntro
systems coupled to EMG signals.

Furthermore, muscle fatigue has an effect on the relatipristween EMG signals
and muscle forces: The EMG spectrum shifts to lower fregesrnand the amplitude
measured by surface electrodes increases. The motor taritscsfire more synchro-
nized, resulting in a visible tremor of tension [Win90a]. féets of muscle fatigue
are not taken into account in this work. An analysis of theféects can be found
in [Seg03].

In the context of this work, EMG signals are always relatesuidaceEMG signals.
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3.4 Remarks

In this work, muscle forces are estimated from the recorddéEsignals to analyze
the desired action of the operator. For this, two main aspeave to be considered:
First, a proper biomechanical model of the human body hastddveloped. This
model has to incorporate major properties of the musclesglived a good estimation
of muscle forces. It does not need to be too detailed. Mostptexmuscle models
have been developed by observation of the behavior of smglecles from animals
or human cadavers, and are not used with multiple musclemsgst When perform-
ing experiments with the operator and the exoskeleton, noimgr factors influence
the quality of the results, like attachment of the exoskeled the human, mechanical
construction of the actuation and so on. Creating an overtyptex model will not im-
prove the overall system behavior very much. Inclusion ditiahal properties should
always be considered in the context of the whole work and ttential improvements
of the overall system behavior.

Second, recorded EMG signals depend on a variety of fadikessweat on the
skin, blood circulation and so on. Those factors unfortelyatary from day-to-day.
If muscle force is to be derived from EMG signals, the EMG tosela activation
relationship has to be determined for every experimentaisa anew.

The implemented human body model is described as part ofdhat system in
the following chapter 4, and the calibration of all modelgmaeters is presented in
chapter 5.
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4 Intention Analysis and Support
Computation

This chapter describes the control system of the exoskelelbis responsible for
determination of the desired action of the operator andrg¢ing the support with the
actuation of the exoskeleton.

In general, this system is subdivided into three distinctpd he signal evaluation,
which is responsible for analyzing the intended movemetti@bperator, the compu-
tation of a suitable support action, and the execution & #detion through a control
loop that commands the actuation of the exoskeleton, asrshofigure 4.1.

Section 4.1 describes initial considerations, and a defmiof the requirements
of the control system. Section 4.2 gives an overview of thelaltontrol system,
section 4.3 describes the evaluation of the EMG signals timate the operator’s
muscle forces, section 4.4 explains the appropriate detation of support, and in
section 4.5 the low-level controller connected to the actua presented. The control
scheme has been published in [FHO6].

The presentation of the system is orientated towards thexegkeleton that was
developed in this work and is presented in chapter 6 so thabppate graphic de-
scriptions can be given. But the algorithms are generic amdoe applied to almost
any part of the human body and to a wide range of exoskeletons.

4.1 Preliminary Considerations

Computation of the support action and the subsequent daifttioe force contributed
by the actuation of the exoskeleton strongly depends on ditygub of the intention
detection algorithm. It can be a fuzzy "idea" of the direstad movement, an accurate
estimation of the movement within the next timestep, a cetepnovement descrip-
tion like "climb a stair", or the desired muscle force of thgewator which he or she
cannot generate alone.

From our point of view it is desirable to allow the operatdi éontrol over the exo-
skeleton at every time. This excludes algorithms which tiienomplete movements
and replay pre-defined trajectories. While the latter candatul during rehabilitation
to teach the subject correct gait patterns, healthy operatn benefit from a system
allowing more control: Characteristics of the movement barmodulated, for ex-
ample, the stride-length, and walking in a natural envirentrwith steps, stairs and
obstacles can be performed more easily. Itis also expdetethte transitions between

35
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Figure 4.1: Basic concept of the interface and controller structuree EMG signals
are recorded from relevant muscles and are analyzed tagsitiekinematic infor-
mation from the exoskeleton. Output of the analyzation ésitttended action of the
operator, for which a suitable support is computed. Thipeups passed to the motion
controller which is responsible for the execution with tieeuation of the exoskeleton.

different tasks is performed more natural, for examplewken standing-up and walk-
ing or walking and climbing a stair, and they can appear atrary points in time. It
is also more convenient for the first experiments, performiga healthy operators, to
give less control to the machine and more control to the huiorasafety reasons.

In this work, two of the above mentioned approaches are exgioln the rest of
this chapter an algorithm is presented that estimates thetip’s own force contri-
bution to a movement, and adds a certain amount of extra torite By utilizing a
linear relationship between the joint torque produced byojperator's muscles and the
torque created by the actuation, it is hoped that the huntwmiotor system can adapt
easily to this external influence. In section 8.1 an algarith presented that predicts
the desired movement of the operator for the next timestépavilynamic rigid body
model.

Both algorithms are based upon evaluation of EMG signalstedhfrom the mus-
cles during their activation. The complexity of the anadyand support calculation
has to be so low, that the support can be calculated contstyiand very fast, but
not necessarily in real-time. The loop which determinessiiygport should run with
a frequency of at least 100Hz. It is of no use to develop a leetacomplex, and ac-
curate model that produces results with an intolerableydélais delay could result
from computational effort as well as from the structure @& giignal evaluation that
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4.2 Basic Concept

has to wait for certain data to be recorded. Furthermore veoadl optimization can
be performed afterwards to calculate the "optimal" estiomafior every point in time.
From the findings of research groups specialized in thosgsfrglsults have been uti-
lized. From the wealth of available data and models, a sknaiid practical level of
abstraction with a small set of parameters has been chosére ¥ome parameters
can be taken from literature, some can be estimated. Butaw@umber remains and
has to be calibrated for every subject. To obtain a systeinctrabe practical used
to perform experiments, the number of those parametersohaes kept in reasonable
limits.

Unfortunately, some of those parameters are subject togehla@tween experimen-
tal sessions. It should be possible to calibrate them ed%lpvoid inconsistencies of
computation between the calibration setup and the expatswath force support, itis
best if the calibration is performed with the exoskeletostem itself, and without any
external devices. But it has to be pointed out that this congdraded for accuracy of
the calibration and the kind of parameters that can be datedn Due to the limited
capabilities of the sensors mounted on the exoskeletormaay different reference
values can be accurately obtained to calibrate with. Thibregion is presented in
chapter 5.

4.2 Basic Concept

The concept of the system is to amplify the muscle forces timedm operator is pro-
ducing. Since the human is inside the control loop, he or sheregulate the muscle
activations to perform the desired movement while recgivime support. Through
feedback in the body he or she can take into account the ektsupport, and reduce
the own force contribution to the movement when the actugitees support. This
requires an operator that is able to coordinate muscleadidis in accordance with
the external support. Higher amplifications demand lowtmieies of the system to
remain stable and the capability of the operator to adapviger normal movement
patterns to the modified circumstances.

The concept of the control system is shown in figure 4.2: lmeses the current
joint torque contribution from the EMG signals of the operahrough a simplified
body model. The desired supporting torque is derived froaotirerator’'s own torque
contribution and a given support ratio. The current torqaetiibuted by the exo-
skeleton is calculated by a sensor integrated into the ttaad a proper model. The
difference of the desired support torque and the curremd@iiporque forms the torque
error that is passed to the torque controller with connedtcthe actuation.

The evaluation is performed continuously. No pre-definagettories are applied.
All sensor data are recorded with 1kHz, but downsampled salliated with approx-
imately 100Hz, allowing spontaneous movements. The lastimotion control loop
runs at a frequency of 1kHz.

This control scheme has no knowledge about the movementihatsult from
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Figure 4.2: Control structure of the system: The EMG signals are evatuay a
body model resulting in an estimate of the operator’s toxpreribution. The support
torque is computed from the operator’s contribution, fargnithe target joint torque.
This torque is compared to the current torque produced bgdheator. The resulting
error is evaluated by the controller and appropriate cosigmals are generated.

the combined effort of the operator and the actuation. Thwkgity of the general
concept is traded for the possibility to include algorithwisich observe the global
behavior to control postural stability or suppress inappeie movements. On the
other hand it is a very fault-tolerant mechanism and givesathle-bodied operator a
high degree of freedom and control.

4.3 Human Body Model

The human body model is responsible for estimating the ®afuihe operator from
the EMG signals of all observed muscles as shown in figurelddbes not take into
account any movements resulting from the activation of theates.

Fortunately, a lot of work has been undertaken by other gréoipnodel the human
body, as summarized in chapter 2. An overview of properties rmodels that also
includes the properties taken into account in this work aafoland in [BLMBO4].

In the following, the model is described as implemented. @&ke&usion of some
well-known properties is explained, either because nectggzarameters cannot be
determined during calibration, or their effect is neglettan the considered applica-
tion. Properties of the human body tlaa€included in the model have been introduced
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4.3 Human Body Model

with their origin in chapter 3. The effect of inclusion of #®properties is analyzed
during the experiments in chapter 7, justifying the compyeaf the model.

The following sections describe the signal evaluation fioside to outside: from
muscle details to the resulting torque contribution of a ceydbefore the summation
over all muscles is performed. The model is explained fotdhgue computation of a
single joint, but taking into account multijoint muscles.

EMG Signal to Muscle Activation

First of all, the muscle activatioa(u) as a function of the postprocessed EMG signal,
u, has to be determined. This activation is a dimensionleastify 0<= a(u) <=1
that reflects the activation of the muscle relative to theimaxn voluntary contraction
(MVC) of a muscle. It is obtained from the EMG signal, whichaisneasure for the
electrical activity in muscle leading to contraction, i tiollowing way:

1. From the time-discrete raw EMG sigrett), which is a function of time, the
moving average(t) of the signal is subtracted, eliminating any offset from the
sensor setup.

2. The offset-corrected signal is rectified.
3. The rectified signal is lowpass-filtered to form the aciovaenvelopeu(t).

4. The offset of the postprocessed EM§, which is measured when the muscle
is relaxed.

This results in the following EMG postprocessing:

u(t) = L(le(t) —e(t)]) — uo (4.1)
whereL is the low-pass filtering function, in our case a second oBigterworth low-
pass filter, with a cut-off frequency of 1.6Hz. Common valaes in the range of
4Hz to 10Hz [BLMBO04], but experiments with the actuation @ahown that a lower
frequency improves the system behavior (refer to experisn@nsection 7.2.3). This
lowpass-filtering simulates all different aspects of th@gass-filtering in the human
muscle: from the chemical processes on the way to and wili@mtuscle fibers, the
electrical transmission delays, to muscle and tendon glasticities. An example of
a raw EMG signal and the output of the filtering can be seen urdig.3.

In human body, the activation of a muscle does not happeariteteously. It takes
some time until the muscle force is generated and ceaseateritlre this is modelled
as themuscle activation dynamid€wW90, MB03] and called thelectromechanical
delay[CK79, ZLMF95, VMIS90], which is not taken into account her8ome dis-
placement in time between the EMG signal and the force valaee observed, but
in our experimental setup it is hard to verify where this getames from, and the
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Figure 4.3: Raw and postprocessed EMG signal.

measurements are not accurate enough to calibrate reqparacheters. But it may
have an effect upon the performance of the system.

As was explained in section 3.3, the EMG signal to force i@tship is reported
to be linear, exponential or logarithmic. Two transfer fiimies have been utilized in
this work to investigate the performance of the torque mtésh. The first function is
based on [PNM96], using an exponential relationship:

eAuFrl .
e (@2

whereu is the postprocessed EMG valliean estimated maximuhof the signali(t),
andA, a non-linear shape factor defining the curvature of thetfancbound to an
interval of -5 < A< 0.

For A — 0 the function approximates a linear relationship.

The second activation function has been suggested in [MBO®] is slightly mod-
ified here. It consists of two portions: For EMG values beloeedain thresholdyo,
with the corresponding activatioag, the function is approximated with a logarithmic
function, whereas the other portion is approximated witinedr relationship:

W 4.3
3pu(U) m(u— Up) + ag otherwise (43)

with up = 0.3R

{mln(%—%l) if U< uo

where(up,ap) defines the point of transition between the two portions efftmction
in the EMG signal / activation spacA,defines the shape of the logarithmic portion,
andm the slope of the linear portionR is the estimated maximum of the postpro-

1Since this function is applied online, a definite maximumnmtrbe determined. In contrast to the
original definition,u is not normalized in advance.
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4.3 Human Body Model

cessed EMG valua. The function is modified in contrast to the original suggest
in [MBO03] in such a way that the two pieces of the function areatly related through
the parameters. In the original work the pieces had indep@rhrameters which have
been optimized to create a continuously differentiablefiom. This is not an impor-
tant aspect in our work, and leads to an overall more inatewarve fitting with our
experimental setup.

Following that, the parameters of the EMG signal to muscteaition relationship
areA, R, orA,m, ap, R, respectively, for every muscle, depending on the actwdtinc-
tion. They depend very much on the condition of the subjedtedectrode placement,
and have to be calibrated for every experimental sessiofcaredery muscle.

In the following text, the activation functioa(u) is a placeholder for one of the two
functions defined above, to abstract from the underlyinyatoon function.

Muscle Activation to Muscle Force

Once we have obtained the activation of the muscle, we carpetanthe resulting
force using a simplified Hill-type muscle model. Hill-typeustle models abstract
from internal processes of muscle in favor of a perspectivaf'outside”: the muscle
is modelled by observation of the behavior through a cohiteaelement, and pas-
sive dampers and springs. Since the original paper by HilBp{ was presented,
many derivatives of the model have been published incotimgraecent findings. An
overview of modern Hill-type models can be found in [Win90aihd parameters of
those models are readily available in literature.

In this work, a simplified Hill-type muscle model is explathemitting some as-
pects which are not required in this context. This model mashin figure 4.4. It
consists of two elements: a contractile element produdiagittive muscle forcé,",
through contraction, and a parallel elastic element thadyces the passive fordgY",
when the muscle is stretched:

F™=Fy+ R (4.4)
The force of the contractile element is calculated by thelpeb of the muscle ac-

tivation, a(u), and the maximum isometric foreat optimal muscle fiber lengtiF™,
and the active force-length functiofy (I™):

F' = fA(IMFMa(u) (4.5)
with ™= :—: (4.6)

(o]

wherel™ is the normalized muscle fiber length, which is the muscler fibegth,

2Force that is produced under isometric conditions, thatddength change of the muscle occurs.
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mt

I

Figure 4.4: Schematic of the muscle model: The contractile element (€Edeating
the active forceF,", through sarcomere shortening. The parallel element (EfiEr
sents fiber and tissue properties resisting the stretchitigeanuscle through a passive
force,F5". The force of the muscl&™, is the sum of the active and passive forces and
acts at an angle to the direction of pull: The pennation aggl@he resulting force
along the tendon is the musculotendinous foFcg,

IM, divided by the optimal muscle fiber lengtl). fo(IM) describes the ability of the
muscle to produce force at a certain muscle fiber lengthr(tefigure 3.3).

In literature it is reported that the optimal muscle fiberginchanges with the level
of activation [LB03, BLMBO04], which is an important fact, &g optimal muscle fiber
length is a crucial parameter of the muscle model. Neveztisethis effect is neglected
here to keep the number of parameters low. Further expetshanwe to be performed
to investigate if inclusion of this property would signifitéy improve the behavior of
the system.

The passive force is calculated as a product of the maximometric force,F",
and the normalized passive force-length curfge,

A = fp(MFy" (4.7)

fo(I™) and fp(I™) can be found in literature [DLH90] and are shown in figure 3.3
(left side).

The force-velocity relationship of a muscle, as shown inrig8.3 (right side),
is omitted since the movements considered in this apptinadre rather slow, and
the maximum muscle velocity that is used for normalizatibthe muscle velocity
is reported to be about If¥s [Zaj89]. The effect of including the relationship can
be estimated by looking up the muscle fiber velocity for wadkfrom diagrams 6.3
and 4.5, and retrieving values with the normalized musclecity from the force-
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4.3 Human Body Model

velocity curve in diagram 3.3. If desired, the force-vetpcelationship as a function

of the normalized muscle velocity can be included in the pobaf the active muscle

force in equation 4.5. The omission leads to a slight ovenesion of the active mus-

cle force when the muscle shortens and an underestimatien thile muscle lengthens.
If handling of faster movements is desired it can be integlat

Sincefp, fp, and estimations df]' are taken from literature, the subject-dependent
parameters of this model K" for every muscle. It could be argued that the whole
muscle-tendon model has to be scaled according to the sthe ofperator, but this is
not performed. Most of this influence is compensated thrdbgtcalibration of other
parameters. N

To be able to calculaté", the current muscle fiber length?, has to be calculated.
This requires inclusion of a complex musculotendinous rhdule is necessary, since
the force-length property is very important.

Initial experiments have tried to establish a force-anglationship that implicitly
takes into account the force-length relationship and theaheulength as a function
of the joint angle. This relationship was calibrated witheeand order polynomial.
Unfortunately, the predictability of the model was smaticg the model was fitted
strongly to the data. With inclusion of the following modile number of parameters
that are required to be optimiz@er muscleare reduced from three to one compared
to using the polynomial. Less data has to be recorded topertfze calibration, since
a priori knowledge is included that replaces two unknowrapeaters.

This musculotendinous model is a subset of the model pudalish [DLH'90]
which is in part a consistent collection of data from otheurses complemented by
muscle and joint models describing the muscle paths wrgmoiound bones at certain
joint angles where required. The model data can be foundperagix A.

The length of a particular musculotendinous complex (meuaald tendon together,
that is, from the point of origin to the point of insertion)dsfined by:

n—-2
M — Z) IRs1—R| (4.8)
i—=

whereP, = (x;,Vi,z,0)" are the waypoints of the muscle-tendon path. All way-
points are connected to a conditi@n,that checks the joint anglea,, being in certain
intervals:

(4.9)

1 if vk 0<k<J:>a|0W<a <ah|gh
' )10 otherwise

with J being the number of modelled Jomtskol"" andah'gh are the lower and upper

boundaries of the joint angle intervals belonging to Waypoand jointk.
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4 Intention Analysis and Support Computation

The waypointP, is inserted into the path if conditioty = 1. Some boundaries are
chosen in such a way that the condition is always 1.

P are the results of a transformation of waypoint coordina®eof the body seg-
ment coordinate systems (pelvis, thigh, shank, patelta)time pelvis coordinate sys-
tem with

A

R =Mi(ao,...,a;-1)R (4.10)

whereM;i(ao,...,0;3_1) is a 4x 4-transformation matrix as a function of the joint
anglesay, with 0 < k < J of the respective body segments to which the waypoints are
connected. It takes into account rotation and sliding mamshof the individual seg-
ments during joint movement and transforms the coordinateshe pelvis coordinate
system.

The relationship between the length of the musculotendicomplex)™, the mus-
cle fiber length|™, and tendon length!, is given by:

M — ' - 1Mcosp, (4.11)

where@ is the current pennation angle (refer to figure 4.4). Ob\wiguisthe pen-
nation angle would be neglected, the expression of the mdibar length simplifies
to

M= mt_t, (4.12)

But the influence of the pennation angle on the model outpsitdvle investigated
and cannot be neglected in general.

The pennation angle changes with the muscle length witlect$p the optimal fiber
length and can be approximated according to [SW91] by

I3'sin
Q= arctan(m]&)%) : (4.13)

whered is the length change of the musculotendinous complexgaride pennation
angle at optimal fiber length.

According to [Zaj89] the tendon is rather stiff: The stramonly about 3% of the ten-
don length for maximum muscle force. It is neglected heréhabthe length change,
0, relates the current pennation angle to the pennation atgiptimal fiber length,
@, and muscle fiber length?, through
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IMcosp = 1) cos@, — & (4.14)
(0]

Solving equation 4.13 for sip, and replacing cog by the expression resulting from
rearranging equation 4.14 for cpsyields the current pennation angle as a function of
the muscle fiber length,

|m

I
Q= arcsin(lo smqb) . (4.15)

Rearranging equations 4.11 and 4.15 yields

M mt_ |t
sing = o T::% and cosp = | i | (4.16)
with
sifp+cosp=1 (4.17)
it follows for the length of the muscle fiberd":
M= \/(sings)2 + (1M —11)2 (4.18)

which is not depending on the current pennation angle angjrmrt only on the
pennation angle at optimal fiber lengtt, [Onk07].

Unfortunately this equation contains the length of the tent, which is not known
exactly. But since the tendon strain is omitted in our moldé$ approximated by the
tendon slack length;

It~ 1L (4.19)

This is the length of the tendon without any external forqadliad to it. Estimations
of It can be found in e.g. [DLH90]. More complex algorithms approximate the mus-
cle length through numerical integration of the muscle fiedocity starting from an
estimated value [LBO3].

In literature it is pointed out that the model is very sensitio the tendon slack
length of a muscle which varies from subject to subject. Risrieason a tendon slack
length scaleg, is calibrated:
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it— gt (4.20)

wherell is the tendon slack length from literature.

We bound the scale during optimization to the inter@a5, 1.25] to allow differ-
ences between subjects. The optimal muscle fiber lengthtisptonized to reduce
the number of parameters.

We have taken values foF', g, andIAts from [DLH"90]. The remaining parameters
form an additional set of six subject-dependent paramedersne for every muscle.

Muscle Force to Joint Torque

In the previous section the calculation of the force outgdtundividual musclesfF™,
is described. To compute the tendon force (force of the miasmdinous unit)F™,
that is actually pulling at the bones, the pennation angl&om equation 4.15 is taken
into account:

F™ = FMcosp (4.21)

To compute the torque contribution of each muscle, the moarenr (o) as a func-
tion of the joint angleg, has to be determined. This can be performed with the tendon
displacement method described in [ATHC84], based on thecilie of virtual work:

mt
(@) = 0I0(§a)

(4.22)

Computation of the length of the musculotendinous ufilt, is described in equa-
tion 4.8. If muscles are crossing more than one joint, the srdrarm can depend on
the angles of all joints it crosses. But in our case, due tg#wnetric arrangement of
skeleton and muscles around the knee in the human body,ftherioe of the remote
joints on the moment arm is small and can be neglected. Aseaedn for the knee
joint in figure 4.5, the length of the musculotendinous uhidrmges almost linearly
with the knee angle, resulting in an almost constant monremt &he values used for
the moment arms are given in table A.1.

The torque contribution of muscien a joint is calculated by:

Ti =riR™ (4.23)

wherer; is the approximated constant moment arm ofittie muscle and5™ the
force of thei-th musculotendinous unit.
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Figure 4.5: Example of the knee joint: The length of the musculotendsnonits
plotted over the knee angle.® @neans full extension of the knee, negative angles
indicate knee flexion. The hip is assumed to be“gstraight).

The total joint torque produced by all muscles is the sum efildividual contribu-
tions,

N-1
T= % T (4.24)

whereN is the number of modelled muscles spanning the joint Britie torque
contribution of tha-th musculotendinous unit as of equation 4.23.

Since not all muscles responsible for joint flexion and esitem can be measured
and due to the simplifications described above, toffjigonly a rough estimation of
the actual joint torque.

A summary of the computation and all parameters are givepperdix A.

4.4 Determination of Support

As previously mentioned, the exoskeleton is used as a fongifeer. That means, it

does not have an explicit knowledge about the overall mowthat is intended by the
operator, and cannot predict the joint trajectories. Aligiothe muscle activations are
known to the system, the movement that will result is not, eaxahot be determined
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in advance, due to lack of information about the configuratibthe human body and
contact with the environment.

The operator is in charge of maintaining stability and perfiog the desired move-
ment by appropriately activating his or her muscles.

To let the system act in a predictable manner to simplify theege for the operator,
the supporting torque is derived from the operator’s owmuercontribution to the
movement by a linear relationship,

Ts=G-T (4.25)

whereG is the gain orsupport ratio For example, a gain d& = 1.0 means that the
system is adding as much torque to the movement as the oparrada gain oG = 0.5
means that the system is adding half of the torque the opasatontributing.

Through utilization of a linear relationship it is hopedtttf@e overall shape of the
muscle activation pattern is changed as little as possiblenwusing the system. It
is desired that only the amplitude of the activation is realicThis should result in a
short training phase to get used to the behavior of the systam is also an advantage
when regarding the exoskeleton as a device for rehahilitafihe patient would learn
the correct gait pattern, and no artifical pattern which iy trelpful as long as the
exoskeleton is worn.

Further research has to show if other functions have anyradgas over this re-
lationship. The gain could be a function of the current stdtthe system, as far as
known, to add increased support during slow movements gidteng up from a chair,
climbing stairs, or carrying heavy load), and low supporimgfaster movements. The
operator could benefit from a more powerful support wheniptessut during faster
movements such a support can result in even faster movenvemtsh the operator
might not be able to control anymore.

For some applications, like rehabilitation, the respailigfof maintaining a dy-
namically stable pose cannot be put onto the operator. Téiersyhas to take care
of that. Section 8.1 gives details on a different approadficvallows integration of
algorithms controlling postural stability.

4.5 Torgue Control Loop

The torque control loop is responsible for generating adsignals for the actuation.
The target torque of the controller equals the supportingum, Ts, defined in equa-
tion 4.25.

The torque controller is a standard P-controller using tifferénce between the
current actuator torque and the supporting torque as tle eatue to calculate the
controller outpuss.

S=Kp- (Ts—Ta) (4.26)

48



4.6 Summary of Properties

whereTy is the joint torque currently produced by the actuator, Kpdhe propor-
tional gain of the controller. The torque controller can with a higher frequency
than the EMG signal evaluation, to achieve a better perfoomaln that case the tar-
get, T, is not updated in every iteration. Computation of the actutorque for the
exoskeleton of this work is described in appendix B.

4.6 Summary of Properties

The general behavior of the system presented here is thatas€a amplifier. The
simplified human body model which is described throughoigt thapter is used to
estimate the operator’s own torque contribution to the moa in the actuated joints.
This torque is multiplied with a support ratio and contridito the movement by the
actuation of the exoskeleton.

Since the support is not performed with a position controkaowledge of the re-
sulting movement of the cooperation between the operatbttaexoskeleton is not
required. While this renders the integration of algoritHorscontrolling postural sta-
bility impossible, it leads to a very robust and reliabletsys, since a dynamic body
model of the operator and the exoskeleton is not require@. ntimber of model pa-
rameters is reduced significantly, and the number of setsaggichronize the system
with the real world is very low. No global pose informatiorréxjuired to incorporate
the effect of gravity, which is very difficulty to obtain witkensors mounted on the
exoskeleton alone. Arbitrary contact forces pose no prolite the control system
and are taken into account by the force or torque sensor @dtuation.

The latency of the system between the recording of EMG stgaatl the system
response is dominated by the lowpass-filter delay depenatintpe lowpass cut-off
frequency. The effectiveness of the support action is ddipgron the parameter of the
controller. Those two parameters may be adapted for cevf@nators, applications,
or specific movements to allow a quicker response or smoatiogement. All other
parameters influence the degree of support in relation teopesator's own torque
contribution.

All the points mentioned above imply some very useful prapsr Given an exo-
skeleton construction that can move as fast as the operatoitiee exoskeleton will
never hinder the movement of the operator through passioitgxample by not prop-
erly recognizing a movement. The most passive thing theepted control loop can
command is to evade the leg movement of the operator. It doteatter if this leg
movement is performed through the leg muscles or with sugpam the hands and
arms of the operator positioning the leg. This behavior cxduthe target torque of
the controller is zero, either by setting the support ratipdro, or because no recorded
muscles are active. It will not lock and suppress a movenmgeat@osition-controlled
system. But as soon as muscle activation is detected, tisiebedon will contribute to
the movement. If the parameters of the model are determiaegdbadly, the support
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4 Intention Analysis and Support Computation

will not be linear in every joint configuration, as desirechl{pduring cocontractioh
of the muscles where the resulting torque produced by thelesis low (most of the
opposing muscle forces cancel out, and the joint stiffregscreased) the exoskeleton
might hinder the movement slightly, because the summafidimeoagonist and antag-
onist torques might yield a torque with a different sign thhe true muscle torque.
On the other hand the most active thing the exoskeleton cdarpeis to contribute
more than linearly to the movement, because of bad modetreess. For a specific
calibration the maximum deviation from the linear suppai be determined.

In contrast to approaches utilizing inverse dynamics to mamsate the effect of
gravity regarding a statically stable pose, this approdidwa larger support ratios
while still working in cooperation with the operator. Ineseng the support for the
systems mentioned before leads to a point where the opdrasdo reverse his or her
muscle activations and work against the exoskeleton taparh certain movement.
In the presented approach the support ratio is only limitedugh the reaction delay
of the operator to the resulting movement.

The realization of the control system requires very few eesisThe EMG sensor for
the muscles that should be recorded, a force or torque s@teqmending on the kind of
actuation) to measure the current support, and a sensorasumgethe joint angle for
every joint that is crossed by the recorded muscles. Chéagiegsents the exoskeleton
construction and electronics which have been used to igetstthe system in real
world experiments. Furthermore, the algorithm scalesalilyeo the supported joints,
and arbitrary joints can be included and are handled segparat

The described behavior, especially for worst-case saes\as very convenient, and
especially welcome for initial experiments and experirsevith patients.

The following chapter 5 describes the calibration of the el@érameters.

3During cocontraction agonist and antagonist muscles dieeat the same time.
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5 Calibration of Parameters

Since the exoskeleton is in close interaction with the huogserator, there are param-
eters in the system that have to be adapted to the indivigheabtor and to his or her
current body state. This chapter reveals all unknown patensiand explains how they
are determined or optimized.

In work with even more complex biomechanical models, fomegke, in [LBO3] the
calibration algorithm is fed with reference values cokettvith appropriate sensors
during active and passive exercises with an isokinetic ohoraeter, during a straight
run, a crossover-cut and a sidestep. This allowed an aeccaiibration of parameters,
and a larger number of parameters to be integrated. In thet, walidation of the
biomechanical model was the main focus.

In contrast to that, the calibration in our setup has a selmitation: The refer-
ence values the calibration can utilize come exclusivayfsensors mounted on the
exoskeleton, which are also used for the control algoritiitmose are the joint angle
sensor and the force sensor measuring the current force attuator (this could also
be a torque sensor for a different actuator). No sensorsexbed to a global reference
frame are used. This reduces the accuracy of the referehgesva

Since the actuator is attached to the limbs that are comhéztine supported joint,
the force sensor can measure the joint torque resulting fmuscle activity directly,
if the actuator is locked and no external forces except tyrare applied to the leg.
Unfortunately, this limits the calibration procedure tonsetric tasks. But since the
force-velocity relationship of muscles is neglected, thisot a drawback.

It could pose a problem if too many parameters of the humanatqreshould be
identified, because the cooperation patterns of the muaoéealways similar in this
configuration. It may be impossible for the optimizationaltghm to distinguish be-
tween influences of the individual parameters. If diffenervements could be used,
the pattern would change, allowing a distinction betweenitilividual contributions
and between the different parameters of the muscles. Orntkelwand, if an algorithm
can be found that allows a proper optimization for the selectaameters requiring
only a few isometric contractions, the application of theskeleton is simplified by
far, reducing the setup required for the calibration sigaiiily.

Since the much more complex model was proven to yield goadtses [LBO3],
in terms of biomechanical analysis and not the control of xskeleton, we now
have to show that utilizing a subset of properties and sonjermanplifications still
delivers results that are accurate enough for our apphicasind that those remaining
parameters can be calibrated with the given sensors tosdysiadj accuracy.

In the following sections, the algorithm that is used to wytie all parameters of
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5 Calibration of Parameters

the model is presented. During the description of the catiibn some assumptions
are made to be able to perform the calibration. While thos®kiications appear
very rough, it has to be kept in mind that the calibration iscuifor parameters of a
system which controls an exoskeleton. The accuracy of tlileraaon is not the most
important aspect, especially for the EMG-to-force funatitt is rather desirable that
the exoskeleton behaves in a predictable manner so thapénator feels comfortable
and can take advantage of the offered support. This can enhgfified in separate ex-
periments. While it is easy to show the performance of thexapation arithmetically,
for the overall system behavior this is a very difficult prexol.

The following section 5.1 justifies the selection of certpamameters for optimiza-
tion and explains which parameters can be taken from lilezaSection 5.2 describes
the procedure that has to be performed by the operator dilméncglibration to record
useful data, and section 5.3 explains the recognition afifsagnt values and sub-
sequent storage. The stored reference forces are dividedgpail active muscles as
described in section 5.4, before the geometry calibraigmesented in section 5.5 and
the EMG-to-force calibration in section 5.6. A small comrhem cocontraction is giv-
en in section 5.7, and the calibration is summarized witpritgerties in section 5.8.
Parts of the calibration algorithm have been published HQF, FKRHO04b].

5.1 Parameter Selection

In the biomechanical model presented in section 4.3, a nuoflparameters are used:
The waypoints of the muscle paths, the parameters whicl bugl matrices used for
modeling the geometric relationships between the pelgiapir, tibia, and patella, pa-
rameters that describe the force-length-curve, the testhok lengths, the optimal
muscle fiber lengths, the pennation angles at optimal mdibelelength, the parame-
ters of the EMG-to-force function, and the maximum isonodtsice at optimal muscle
fiber length. They cannot all be calibrated. A selection bdsetapplied. The selection
is mostly justified by experiments and results from otheeaesh groups, since they
have investigated properties in greater detail, with mopeieate measurement setups.
It is of no use to modify parameters that are well-acceptedercommunity and have
been validated before without a good reason. One such reasars, if one parameter
is adapted to incorporate the effect of another, which cebeadentified separately.
Although the dimensions of the human skeleton have beerifigehin [DLH*90]
for one specific subject, they will not be calibrated in ograaithm. It can be sensible
to scale the data to fit the anatomical properties of the égenaore closely. But this
is omitted. Investigations on the change in moment arm dwseating is performed
in [OnkO7]. The linear effect on the moment arm, for exampld, be compensated
through optimization of the maximum isometric force, andeatain degree of this
simplification will be compensated through optimizationtioé tendon slack length
scales, which has significant influence and is not well eistadd in literature [LBO3].
The force-length-curve is widely used in literature andtadbred to a specific sub-
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ject. It is modulated by the muscle activation in more comph®dels, which is omit-
ted here. Initial experiments performed by ourselves oggdha force-length curve
with a second order polynomial, resulting in overfitting thedel to the calibration
data. The model prediction was suffering, leading to thechumion that more accu-
rate and a greater number of reference values had to be addaiget a more reliable
solution, or the well established curve from the literatoas to be used.

The optimal muscle fiber length is also a candidate for inclug the calibration
process, but is in part compensated by the calibration detheon slack length scales.
Itis not optimized to reduce the number of parameters. Thaa@on angle is included
into the model, although the impact on the solution with ifelas/alues is rather small.
Calibrating the pennation angle would not significantly i the performance, thus
standard values from literature are used [D199, Win90a].

As motivated in section 3.3, parameters of the EMG-to-fdtoetion have to be
calibrated whenever the exoskeleton is donned. Since timaiaption is not necessar-
ily performed with maximum voluntary contraction every énthe actually performed
maximum isometric force needs to be calibrated.

Summarizing that, the parameters selected for optimiaatie:

* the shape of the EMG-to-force functiof,

* the expected maximum EMG signal to scale the EMG sigig)s,
» the maximum isometric force at optimal muscle fiber Ien&gﬁ,

« the scale of the tendon slack lenggh,

The subscript denotes that all those parameters are required for everglenus

Those parameters can be subdivided in two categories: Bheditregory is subject-
dependent and requires calibrating only once: the tendark $éngth scales;. The
second category contains the parameters that are expecbeddhanging from one
experimental session to the next. Those are: The EMG-tefparametersl; and
R, and the maximum isometric forcéorf}. All other parameters can be found in ap-
pendix A.

5.2 Calibration Setup

As will be described in chapter 6, the exoskeleton develapéus work supports the
thigh muscles during flexion and extension of the knee joirtte calibration setup
is described for this particular exoskeleton so that prggpaphic descriptions can be
given. The setup can be easily adapted to other joints, analgjorithm is generic and
can be applied to other configurations as well.

Reference values available for the calibration are the ngée and the knee torque
during isometric contractions. The joint angle is not chagdpecause the actuator is
locked. The basic idea is to record the subject’s muscleaain and the resulting
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5 Calibration of Parameters

knee torque during a special calibration procedure. Therded torque values are
used to calibrate the parameters.

Since only those sensors can be used to observe the systamg dailibration, ef-
fects that influence the measurements and cannot be recandeidken into account,
must be minimized in advance. A special setup has to be mdpadimit the external
forces: The operator is sitting on a chair with the exoskelétg not having any con-
tact with the environment below the knee joint. The thighugmorted by the chair, the
knee flexed. The actuator is not powered but locked, allowimy isometric contrac-
tions. When the thigh muscles are relaxed, the force meddyréhe force sensor is
a result of gravitation acting on the exoskeleton and theraoda leg below the knee
joint.

The operator tries to extend and flex the knee with maximumchausctivation
slowly in both directions a few times. The measured forceow an overlay of all
muscles and the influence of gravitation. The angle remaied filuring this phase.

For the geometry calibration this isometric exercise habe@erformed several
times at different knee angles to measure data for differargcle fiber lengths. The
hip angle is held fixed.

When the geometry parameters are available, the EMG-tefoalibration needs
only one trial at an arbitrary knee angle to calibrate therddgparameters.

5.3 Data Collection

The data collection is a continuous process that runs dtiiegvhole calibration pro-
cedure. From the values that are recorded, those with signife to the calibration
process have to be recognized and stored. It must be ensatetthe stored data is a
good representation of all muscle activations with theesponding force values. Data
of different levels of muscle activity should have the sangght in the optimization
process. Making pauses or time spent with a specific levelusiohe activation should
not increase the weight of the data recorded during thisgphas

To meet these requirements, the algorithm stores the dthles. For every muscle
a separate table is created for every angle at which a tirf®rmed.

Recognition of the initiation of a new isometric exerciseatertain knee angle is
performed as follows: When the measured torque rises abosgain threshold while
the knee angle is changed only within a small interval, dustbesired deformation of
the exoskeleton, a new table for every muscle is allocate¢hioh the data is stored.
This is important for the geometry calibration, where eveoyfiguration has to be
stored separately. As long as the exercise is detectedqthed remains above the
threshold), data is put into the tables for all muscles astrae time. Otherwise the
data is discarded.

For a particular muscledata from the&k-th isometric trial is stored in the table entry
with indexh; \, depending on the postprocessed EMG valueyy:

54



5.4 Force Determination of Individual Muscles

hik=uS] (5.1)

where§ is the interval width of every entry of the table.

The entry contains the current data from all sensors fronttineent point in time,
which are the postprocessed EMG signals/ith 0 <i < N andN being the number
of recorded muscles, the joint torque as measured from tieoséntegrated into the
actuation,Tg, the joint anglesxrj with 0 < j < J andJ being the number of modelled
joints, and the number of former entry updateg,of the same entry.

If the entry is empty, the data is stored in the selected er@therwise the data
is averaged on a per-element basis with the data alreadsdsitothe table. For this
averaging old data is weighted with the number of former tgsla,, and the new data
is weighted with factor 1n, is only used for this averaging.

This ensures, that during the optimization process onlgveait values are used.
Those are values when the muscles have been activated.tAlldie tables are used
with the same weight during the calibration process, inddpat of the activation
pattern. Longer periods of, for example, rest or maximuntraation do not change
the weight. Every activation level, that is, every tablergrttas the same weight. This
is an important advantage over standard optimization nastindhere all data or only
everyn-th value is used, and the significance of the data regardti@gptimization
task is not considered.

Averaging of the entries during updates ensures that tmedst@lues are more reli-
able and robust, as long as no muscle fatigue appears.

The data tables are specified with the interval wifith The size of the table is
adjusted as needed with the advent of new values.

Every muscle own& tables after data collection, one per each angle at which an
isometric exercise has been performed.

The process of data collection and sorting into tables fqrezigic isometric trial is
illustrated in figure 5.1.

5.4 Force Determination of Individual Muscles

The calibration process described below is not a globahapétion for all parame-
ters at once over all data. The reason for this is that somelgsiare cooperating
during the described exercises, making it impossible feraptimization algorithm to
distinguish between the individual muscle contributiombe reason for not merging
all muscles into a single muscle in the model and to recorg oné extensor and one
flexor muscle is, that during different non-isometric tggke muscles are behaving in
different cooperation patterns. Depending on the task la@deiquired force, different
muscles are active (refer to figure 6.8 for example patterns)

In the proposed algorithm, the reference tordlig,is computed from the recorded
torque,Ta, by eliminating the effect of gravity:
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Figure 5.1: Data tables of the calibration: indexing of the table entagdd on the
postprocessed EMG signal, and subsequent averaging aadestuf the recorded data.

Tr= TA_Tg (5.2)

whereTg is the torque measured while all muscles around the obs¢oisdare re-
laxed. In that case the torqidg is solely a result from gravity acting on the limbs, as
long as no other external forces are applied, as descrilstion 5.2.

The reference torqudg, is a result ofall activated muscles, but it can be divided
to allow the calibration algorithm to handle each muscleasaely, which reduces the
dimension of the parameter space significantly.

To calculate the individual muscle forcds, the torque shard;, of the reference
torque, TR, has to be determined.

For this the %PCA-weighty, of a muscle is computed by using the activation of
the muscle weighted with its %PCA by:
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5.4 Force Determination of Individual Muscles

B {%PCA- a(u) if already calibrated (5.3)

%PCA-: % otherwise

where WPCA is the relative physiological cross-sectional area of thescte,R the
maximum recorded EMG signal, andhe postprocessed EMG signal. The required
activation,a(u) is only available if this calibration has been performedobef and
parameters from the previous run are available. Othenkisacttivation function is
approximated by a linear relationship.

The shares are summed up for the coactivated muscles, wie@icheamuscles from
the same group as musclélexor group, extensor group),

N—l{wj if muscles i, j out of the same group (5.4)

Weg =
“ j; 0 otherwise

wherew; is the weight according to equation 5.3 for théh muscle, andN is the
number of muscles. Similar for the cocontracting muscldsckwvare belonging to the
group opposing muscie

N—1 {0 if muscles i, j out of the same group (5.5)

Wee =
« J-; —w;j otherwise

whereN is the number of muscles.

The sum of the shares of both groups is computed with a sainraef the cocon-
tracting shares to avoid errors during computation of thgue share in equation 5.7
for small activations:

W, if Wee <Wea—W,
W _ Wca+ CC CC- ca | (56)
Wea—W; otherwise

wherew; is the weight of tha-th muscle according to equation 5.3. This ensures
that the share of the cocontracting muscles is not allowedricel more than the share
of the muscles activated in cooperation with muscle

The individual torque contribution of a musclg, is computed from the reference
torque by means of the estimated shares:

T = TR\V/V—\;. (5.7)
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wherew; is the share computed according to equation 5.3 for musé¥ethe sum of
shares as of equation 5.6, afglis the reference torque.

Substituting the force of the musculotendinous compi¥, in equation 4.23 with
the expression from equation 4.21 for mugcjeelds

T =rF™=riFMcosq. (5.8)
Solving forF™ results in
'I'.
m I
= 5.9
' ricos@’ (5-9)

whereF™ is an estimation of the muscle force the muscle has coné&ibuthen
torqueT; was measured.

We now have a relationship between different muscle aabinaiy;, (through equa-
tions 5.1) and associated muscle fordg, for every entnyh;  of a specific data table
k with 0 < k < K of musclei.

5.5 Geometry Calibration

The goal of the geometry calibration is to find proper valweshe tendon slack length
scales s, for every musclé. Since we are mainly interested in making the EMG-
to-force relationships consistent for different joint &gy we need the relationship
between muscle activation and muscle force for differemgtles of the muscles.

As described above, the muscle contractions with data detpare performed un-
der different joint angles, and the data are stored in séptahles for every angle and
for every muscle. The idea is to modify the tendon slack lesgales for every muscle
in such a way that the computation of the muscle force base¢bdeoBMG signal of a
specific muscle is consistent for all tables, and, as a rdsulall joint angles.

Only if this consistency is established, the computatiamfithe EMG signal to
muscle force can be performed with a satisfying accuracy.c#s be seen in fig-
ure 5.2, the left diagram shows a significant discrepancyéat the EMG-to-force
relationships under different joint angles, because tloengry model is not applied.
Only if the geometry is taken into account with calibratedgpaeters the muscle force
can be deducted from the EMG signal for different joint asghes can be seen in the
center diagram. The right diagram shows the EMG-to-foroetion fitted through the
data of all trials, which establishes a consistent EMGeta# relationship for different
angles.

Expanding equation 4.4 with expressions from equationaAdb4.7 yields (omit-
ting the muscle indey:

~ ~ ~

E™ = fa(MFDa(u) + fo(I™)FY (5.10)
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Figure 5.2: Steps of the parameter calibration for a single muscle. €fiellagram
shows the contents of six data tables for isometric contnastunder different angles:
The force output of the muscle based on the force sensorngsdi each entry is
plotted against the corresponding EMG activation. The maidilagram shows the
same table, but the force is modified with the force-lengttvewafter the geometry
parametes of this muscle has been calibrated: The EMG-to-force ptadihas been
made consistent for different joint angles. The right degishows the EMG-to-force
function after calibration with data from all tables of thescle.

whereF™is an estimation of the muscle force based on the EMG signal
Solving equation 5.10 for the function of the muscle actoratesults in

~FM— fp(MFMm
a(u) = NS (5.11)

ReplacingF™ with the force taken from entrig of tablek, F,» and cancelind="
yields ’

Fm ~
- e

With regard to the data tables, this equation can be inteags follows: For every
entry h of a tablek of a specific muscle, the muscle fordgg;, normalized byF",

together withe' (affectingi™) define a point of the activation functioau), depending
onu throughu = g (equation 5.1 rearranged). As longR is not known from prior
calibration iterations, the term fdp has to be omitted. In that caBg" is substituted by
a constant value greater than zero. This introduces a lavear for alla(u) that does
not affect the outcome of the optimization, aside from ttot fiaat the passive force is
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not included. The consistency of this function across thifie tables is established if
the resulting valuesa(u), for a given activationy, are the same for all tables from a
particular muscle. The absolute values are not importantus Tthe linear error is of

no consequence.

Consistency can be established by reducing the standaiatidevof the values ob-
tained fora(u) for a given activation for all corresponding table entries of a particular
muscle through optimization &. The standard deviation of the force prediction of
musclei for the EMG value related to table entries with indelsy equation 5.1 is:

1 K-1 _ 5
Oh(S) = sz (a(uch) —an))) (5.13)
=

with the activation function from equation 5.18u), the EMG valuay ,, from table
k and entryh, the number of tables of musdleK, and the average activatioa,. This
computation can be performed for the entry indibgbecause the scaf is constant
for every muscle, relating the activation to the same enfdeall tables of a particular
muscle. It is assumed that all tables are filled.

Averaging the standard deviations,, for a particular slack length scak, over all
activations is well suited to evaluate the quality of thelrakion, and is computed by:

a(d) = % on(s) (5.14)

with gy, as defined in equation 5.13, aﬁdbeing the highest entry index of all tables
of this muscle.

The shape of the functioa(u) does not need to be known, which is very helpful
considering the fact that different activation functionaynbe used for the muscles.
Looking at the global scope, minimizing for every muscle deliverdl optimized
valuess), one for every one of th muscles.

The minimization can be performed by complete subspacelseath a fixed step-
size of, for example, 0.001m and an interva[@B5, 1.25] for the tendon slack length
scales. This is preferred over other optimization algonghbecause local minima can
exist. The error over the tendon slack length scales for amele calibration is shown
in figure 7.1 right.

5.6 EMG-to-Force Calibration

In the previous step, the geometry parameters have beemipgdi, resulting in an
improved consistency of the EMG-to-force relationshipddferent joint angles. The
EMG-to-force calibration is closely linked to that.
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In the EMG-to-force calibration, the parameters of thevatitbn functiona(u) and
the maximum isometric force;)", for every muscle have to be optimized in such a
way that

a(ugh)Fo" — Ry — min. (5.15)

for all tablesk and all entriesh of the specific muscle R is the force derived
from the reference torque in enthyof tablek for the particular muscle, angl p, is
the postprocessed EMG value. As motivated in section 4.8,wscle activation
functions,aexp(U) andapy(u), with different parameters sets are utilized here. The
calibration for both functions is described in separaté¢ises below.

Both calibrations have in common, that the maximum expeEtd® signal,R, can
be directly read from the data tables: It equals the actimdtiom the highest entry of
all tables of a specific muscle. From the same entry, valugléamaximum isometric
force, F", could also be taken, but experiments have shown that thiaption can
be improved noticeably if this value is optimized togethéthwhe other activation
parameter(s).

Optimization of the Exponential Activation Function

According to equation 4.Beyp(u) is defined as

MR
Rerpll) = ~n 1

whereA andR are the parameters of the activation function, antle postprocessed
EMG value. R can be determined as described before, Angl determined together
with Fj"by a two-dimensional optimization algorithm.

The error function of this optimization is given as

ESR(A F) = Z;(aexpukh ) (5.16)

where the squared differences between forces predicted fhe EMG signal,
aexp(Uk n)Fo", and forces derived from the measuremeﬁﬁ, are summed over all
entries of all tables of a particular muscle. A is bound-6 < A < 0, and FMto
100N< F" <2500N.

Since the parameters are bounded and the search space Wadimémsion, simple
algorithms are sufficient. In this work, a subspace search peaformed, which is
described in appendix D.
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Optimization of the Piecewise Activation Function

The piecewise activation functia(u) is defined in equation 4.3 as:

u
(V) m(u—Up) + &g otherwise
with up = 0.3R

{mmmu—wn if U< uo

requiring three parameters: the maximum expected EMG kignthe shape of the
logarithmic portion of the functior, the activation at the transition point between the
two portions,ag, and the slope of the linear portiom,

Again,Ris directly taken from the top-most entry of all data tables.

Let m be the slope of the regression line of all entries of all taloethe particular
muscle with signaill > up, andap the value (muscle force) of the same regression line
at the point of transition between the two portions of thezewhereu = up.

The muscle force of the linear portion can be computed by

F™(u) = mu+n (5.17)

wheren'is they-intercept of the regression line. Now the maximum isorodtiice,
F", can be calculated by:
F'=F™(R) =mR+A (5.18)

Sinceap = My + A it follows:
"= MR+ &y — Mw = M(R—up) + & (5.19)
Substitutingug = 0.3R from equation 4.3 yields:
F" = 0.7RM+ & (5.20)

The slope of the activation of the linear portionagfy(u), m, can now be obtained by

m
m=— 5.21
|:Om’ ( )
and the activation level at the point of transition by
do
=—_. 5.22
%= fm (5.22)

The parameted is determined by linear minimum search within the intef#gl Ag]
with As =5 andA¢ = 100 (boundaries experimentally determined). The erroction
for this minimum search is similar to the error function fbetexponential activation
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function, given in equation 5.16, but wit]" already known:
W m m 2
EfngA =3 3 (o) F"—Fh) (5.23)

This function only depends on the non-linear shape fagétor,

5.7 Remarks on Cocontraction

When calibrating the EMG-to-force parameters, cocontaatannot be neglected. It
strongly affects the values for the maximum isometric cactton, as does coactiva-
tion. This is taken into account by equation 5.7 during terdistribution when the
parameters are calibrated. Since the muscles are catibiratgequential order, the
EMG-to-force calibration can be repeated to apply the EM@upeters to the distri-
bution.

If the cocontracting muscles are neglected in equationtBeé¢alibration error of
the maximum forcef[", can reach about 50%.

Experiments revealed that due to the linear approximatidheoactivation for un-
calibrated muscles, a single repetition is sufficient, dmeltd be performed to incor-
porate the effect of the passive muscle force in the geoneeliigration. Additional
iterations do not improve the results considerably. Thignalyzed in section 7.1.1
with some examples.

5.8 Properties of the Calibration

The calibration presented in this chapter has a number obiitapt properties which
are summarized here for convenience.

* The algorithm has an automatic selection of relevant nreasents for calibra-
tion. This keeps the number of reference values low and exitiee computa-
tional effort of the optimization algorithms.

 Storing the data in tables indexed by the activation of tid&vidual muscle puts
the same weight on all activations. If desired, the weighildde modified
according to the EMG activity, emphasizing a special rarfgawscle activity.

» The algorithm is fast due to splitting of the whole set ofgraeters into several
groups, reducing the parameter space for the individuainigdations.

» The algorithm uses an estimation for the computation ofitdezidual muscle
contributions. Initially, this distribution assumes adar activation function,
and the distribution is refined with calibrated activatiomdtions for repeated
iterations.
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5 Calibration of Parameters

» The passive muscle force is included in the geometry opttion only for re-
peated optimizations.

» Because the optimization includes sequential steps ofdiomensional opti-
mizations, in contrast to an optimization where all pararetre determined
at the same time, the whole algorithms allows interestisggint into the pro-
cess. The behavior of the system as well as measuremenctstdnd results
of the calibration can be interpreted. Local minima are @®diif the step size
of the subspace search is chosen small enough without siegetihhe computa-
tional effort beyond limits. This assumes that the torqueritiution is not too
inaccurate.

» Due to the low dimension of the parameter spaces, the #hgois well suited
for optimization with a reduced number of reference reaaydi Of course,
accuracy is improved with more trials.

» The fixed distribution of the measured torque to the indigidnuscles can be
inaccurate and reduce overall performance. It is not astabiEpas a complete
optimization. On the other hand, an all-in-one optimizatan result in a dis-
torted distribution among the muscles if they are activatddhear relation. In
that case, an all-in-one optimization cannot determinelwmuscles contribute
which portion. Experiments have shown that a linear refebietween the ac-
tivations is common for muscles out of the same group (ewtegioup, flexor

group).

Finally, it is to be noted that this calibration algorithniried out to be very helpful
during investigation of the biomechanical model utilizadhis work. It allowed deep
insight into the mechanics of the model and interpretatiopamameter variation and
resulting effects during the development of this work.

Important results from those investigations, like the perfance improvement
through inclusion of the geometry model, together with expental data from cal-
ibrations are presented in chapter 7. But before that, en&ppresents the hardware
that was developed for those experiments.
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6 Exoskeleton Hardware

In the introduction the importance of mobility for peopleshaeen motivated. The
variety of potential applications gave birth to the idea avelop a powered lower
extremity exoskeleton. In order not to run into too many feois with the mechanical
construction, the exoskeleton was designed to supportevdgyday movements: sit-
to-stand, stand-to-sit, walking, and climbing stairs ug dawn.

From the joints mainly involved in those tasks — the hip, kaad ankle joints —
the knee was chosen for support, because it is very impdidamhovements which
require large forces and where support is actually helpfud sit-to-stand and stair
climbing movements. During normal gait, large propulsiwecés are produced in the
ankle joint, but adding support for those muscles is more ehargical engineering
challenge because of more stringent size and weight camstrd.ack of hip muscle
forces can be compensated in part through pelvis motion.

This chapter describes the mechanical construction areléb&onic components of
the exoskeleton. Itis organized as follows: In the follogveection 6.1 general require-
ments of an exoskeleton to support the knee joint are specifi@ose requirements
lead to a design which is described in section 6.2. The dotuaf this exoskeleton is
described in section 6.3, followed by the sensors in 6.4d#te processing unitin 6.5,
and the communication structure that connects all comgsnersection 6.6. Safety
issues are discussed in section 6.7 before the chaptersisccloith a summary of the
properties of the exoskeleton in section 6.8.

6.1 Requirements

This section describes the requirements of the system. &sigrm parameters of the
exoskeleton are: range of motion, velocity in the knee jdirigue in the knee joint,
size and weight, and power consumption.

The range of motion can be directly measured: It should rémoge 0° (straight leg)
to approximately-110° (knee flexion). While the natural range of motion is larger, i
is sufficient for the movements which should be investigated

The required velocities are functions of the joint anglestfe particular move-
ments. Figure 6.1 shows the velocities plotted over the langge for a single step of
slow and normal gait, the sit-to-stand movement and slow cienbing. For normal
gait, angular velocities of 200—400/s are not uncommonlengiow walking requires
velocities of about 100/s. During the sit-to-stand movetn#re velocities are rather
small, typically below 100/s. Figure 6.3 shows an exampi¢ pf the knee angle and
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Figure 6.1: Angular velocity against Figure 6.2: Maximum actuator torque
knee angle for walking, sit-to-stand, plotted over the range of motion. The
and stair climbing, together with ac- torque is largest at an angle of -75 due
tuator maximum angular velocities (no to the geometry of the attachment.
load).

velocity trajectories of normal gait. It has to be pointed, dbhat the movements are
performed rather slow, as could be expected from people whimaneed of support.

The required torque in the knee joint is not so easy to defireedends on the size
and weight of the subject and how much support is desired.aBuaximum torque
of approximately 50-100Nm should be sufficient for the ekpents intended here. It
should be kept in mind that the power of the actuator detezmits size, weight, and
power consumption. For those parameters no definite limitsbe given, since they
are a matter of comfort and acceptance.
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Figure 6.3: Example of normal gait: knee angle trajectory and anguldooites
plotted against time.
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6.2 General Design

Figure 6.4: Complete exoskeleton, with the actuator connecting thigh shank of
the orthosis (right), the single board computer and powpplstattached to the waist
belt (left), and the display and keypad (bottom left).

6.2 General Design

The overall design of the exoskeleton system is based ongeriexent orthosis man-
ufactured by Otto Bockthat is normally used for patients with disabilities in thei
locomotor system. As shown in Fig. 6.4 the orthosis covezghigh, shank and foot
with two hinge joints at the knee and ankle. The two jointgtitme motion to a single
axis each, allowing movement in sagittal plane only. Supfoorthe operator is only
given at the knee joint, the ankle joint can be moved passiaetl allows putting the
additional weight of the exoskeleton to the ground. Thedawapport is produced by a
linear actuator, shown in detail in figure 6.5, that is cotne@at the thigh and shank of
the orthosis with two joints with two degrees of freedom edhchanging the length
of the actuator the angle between thigh and shank can be eubdifihe force of the
actuator is measured by a sensor attached between the lip attuator and the joint
with the shank.

Embedded in a soft fabric between the orthosis and the legeohtiman are six
EMG sensors: three on the frontside and three on the bactiktte thigh, measuring
the activity of six muscles responsible for knee flexion axtésion.

All sensors are connected to an 3BUs that is used by a single board computer
(SBC) for data acquisition and support control. The pow@psucan be carried on a
waist belt, as can be seen in figure 6.4, allowing full autooosoperation.

6.3 Actuation

Regarding the actuation, one has to decide between seuaddrmental concepts: ro-
tatory actuators (like electric motors with harmonic dsyer linear actuators (electric

10tto Bock HealthCare GmbH, 37115 Duderstadt, Germany
2Serial Peripheral Interface bus: synchronous serial datastandard designed by Motorola.
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6 Exoskeleton Hardware

Figure 6.5: Actuator that is attached to the knee joint: (1) emergencycbw(2)
watchdog, (3) force sensor, (4) hardware PID controller sigdal conversion board.
The pwm-amplifier and DC motor are hidden below (4). (A) Showesdirection of
action of the piston.

motors coupled to ball screws, pneumatic or hydraulic pst@neumatic muscles).
We decided to use an electric motor that is connected to asb@lv with a gear belt
for the following reasons: When the actuator is attachetieahigh and shank of the
exoskeleton properly, the geometry of the actuation resnla variable transmission
from the linear velocity to the angular velocity and from #etuator force to the joint
torque. When the knee is flexed the actuator produces a largeg with a low an-
gular velocity, whereas in the straight-leg configuratiba torque is rather small in
favor of a high angular velocity. This is a very desirablegaxy, because it resem-
bles characteristics of human movement: For example, tie-stand movement is
quite slow but requires large torques during the initialgghaf getting up. Walking
on the other hand requires high angular velocities in the koi@t during swing phase
where the leg is being extended, but only little torque. ®img stairs is somewhere
in-between: The movement itself is slower than walking ®guires more torque,
and higher angular velocities are found in regions wherektiee is more flexed but
with low torques. This is a superior property compared tatat actuators, since it
resembles the characteristics of human movements. A conaftenmative approach
with actuation through harmonic drives does not have thsathge: Since the geo-
metric relationship remains unchanged in all joint configians, the actuation has to
be able to produce the maximum required torque and angulaeitxeunder the same
circumstances. Figure 6.1 shows the angular velocity gudadigainst the knee angle
for walking, climbing stairs and the sit-to-stand movemeXit those movements are
performed rather slowly, as performed by people who are @uroé support.

An electric actuation was chosen because the overall paweeight ratio, that is,
actuation plus power supply, is lower than for the others| electric motors allow
execution of very smooth motions.
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6.3 Actuation

The linear actuator consists of a ball screw connected taralatd DC motdrby a
gear beltand is shown in figure 6.5. Attached to the casinigedtball screw is the pwm-
amplifie’* which powers the actuator, a circuit board which conneasatnplifier to
the SPI bus, and a watch dog that takes over control in casearhauter failure.

The motor is a maxon RE3%with a power consumption of 90W, and a maximum
power output of 206W at 42V. The amplifier is a Copley 4122#th a voltage range
of 24-90V and a maximum output current of 20A. The total wemfithe actuator is
2.5kg.

The actuator can change its length between the points afhaiant from 300—
430mm, and has a maximum force output of approximately 1700 points of
attachment to the orthosis have been chosen in such a waththagsulting range
of motion and angular velocity is sufficient for slow evergydmovements. The lo-
cation of those points is given in appendix B. Arranging thpsints is a trade-off
between the angular range of motion, the maximum angulacitg] and the resulting
maximum torque in the knee joint for a given actuator.

In the chosen configuration the range of motion is approxehgat10, which is
smaller than the natural range of motion for safety reasdime angular velocity is
depending on the linear velocity and the current knee anglee resulting angular
velocity without load for the maximum linear velocity of apgimately 100mm/s over
the range of motion is plotted in figure 6.1 together with eghea of the movements
of interest. It can be seen that for most movements the angeliacities are sufficient,
because they fall in-between the curves of the actuation.

In figure 6.2 the maximum torque produced by the actuatoratgd over the joint
angle. The maximum torque is produced at a joint angle of ¥&td the points of
attachment of the actuator to the orthosis.

The torque that can be applied to the orthosis by the actistalso limited by
the fact that the orthosis is deformed under large forced. tiNowhole force that is
produced by the actuator is immediately transferred intwra forque.

Obviously an actuator can be constructed that would be faspawerful enough
for fast movements. Limitations are only given by the addisil weight that would be
imposed on the operator. In this work the focus is put on the-machine-interface
and not on the mechanical construction. A lightweight aciughat is sufficient to
support slower motions was used for this purpose.

3Electric motor that is powered with direct current (DC).
4Amplifier generating output signals with pulse-width maatidn.
Smaxon motor uk, http://www.maxonmotor.co.uk/, 2007.
6Copley Controls Corp., http://www.copleycontrols.cog007.
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Figure 6.6: Hall sensor attachment to the knee. The magnet is mounteaeathigh
part of the knee joint. The Hall sensor is fixed to the circaiatal above the magnet
which is connected to the shank of the orthosis.

6.4 Sensors

Three different types of sensors are attached to the exaskel The first type mea-
sures the knee angle, the second type the force output oftih@tar, and the third type
reads the EMG signals of the operator.

Angle Sensor

The control system needs the knee and hip angles to propedicpbthe muscle forces.
This can be performed very simply for the knee joint, sinae éhnthosis limits the
motion of the knee joint to the sagittal plane around a sifigkdd axis. This allows
the application of a Hall sensor which is accurate and ridiab

As shown in figure 6.6, the magnet is attached to the thighebitthosis and the
Hall sensor is placed above the magnet on the circuit boarchigfixed to the shank.
During joint rotation the orientation of the magnetic fieleldawv the sensor is changed,
which is measured by the sensor.

The Hall sensor is a PhilipkMZ41, connected to a Philips UZZ9001 signal con-
ditioning IC [DWO0O0], which readily provides a digital outpto the bus.

Due to the three degrees of freedom in the hip joint, a compieghanical con-
struction or other sensors, like goniometers, would haveetapplied, making the ap-
plication of the exoskeleton more uncomfortable. Thushibeangle is not measured,
but determined in two different ways: During calibrationsitset to 90, because it is
assumed that the operator is sitting upright on a chair. iguwalking and climbing
stairs the hip angle is set equal to the negative knee anbiehws an unconventional
but sufficient approximation. Besides, the hip angle ontgas the prediction of the
two-joint muscles, which are the rectus femoris and the flexoscles, but the large
forces in the considered movements are contributed by tievanedialis and vastus
lateralis.

"Philips Semiconductors, http://www.philips-semiconidus.com, 2007.
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6.4 Sensors

Force Sensor

The force sensor is attached in series with the actuatomalsecaeen in figure 6.5. Itis
responsible for measuring the force that is produced byc¢heator. The force sensor
is a GS XFTC30® with a range of£2000N, a non-linearity of less thah0.5% full
scale, and a sensitivity @af10mV/V. It is connected to a level adaptation circuit which
outputs to the MAX123912-bit A/D-converter which is connected to the bus.

EMG Sensors

The EMG sensors reading the muscle activations are embéa@esbft tissue of the
orthosis which is holding them on the skin on top of selectetscetes. The choice
of muscles and sensor location is described below. The sease Delsys 2.3 Sin-
gle Differential Electrode’® which have an inbuilt bandpass from 20-450Hz, and an
amplifier with a gain of 1000V/V. An additional amplifier anelvkel shifter adapts the
output to the MAX1230 12-bit A/D-converter which is conredtto the bus.

Figure 6.7: Six EMG sensors are embedded in the thigh brace of the osthdgi(3)
measuring knee extensor activities, (4)-(6) measuring Kiexor activities.

Figure 6.7 shows the EMG sensors embedded in the thigh bfaite @rthosis.

Three sensors are measuring knee extensor activities drotitside of the thigh and
three sensors knee flexor activities on the backside.
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Figure 6.8: Example of postprocessed EMG patterns of walking (lefgnding up
(middle), and climbing a stair (right). The signal is amplifiby the electrodes.

Muscle Selection and Sensor Placement

Since the exoskeleton can only offer support in the kned,jdims feasible to try to
detect the intention by reading activations of muscles Wiiex and extend the knee.
Figure 6.9 shows those muscles.

Although all those muscles are mainly working on knee flexdod extension, some
of them also have other tasks: The sartorius for examplests fléxing the hip joint
and can rotate the shank inwards. Stronger muscles aredigtad during tasks that
require more force like raising from a chair, whereas smatlgscles are activated dur-
ing tasks where finer force control is necessary, for exammgien positioning the foot
prior to floor contact. Depending on the kind of movement thaerformed, different
muscles can be activated, or in a slightly different orderldwing that, it would be
best to be able to record all muscles to properly analyzegsgetl movement.

Unfortunately it is not possible to measure all muscles witlface electrodes. As
can be seen in figure 6.9, some muscles are located deep thighihigh close to the
femur.

It is reasonable to select muscles according to their pribxita the skin, because
they can be measured by surface electrodes, and their stydregause of a poten-
tially high contribution to the movement, to get a good eation of the overall force
production.

Deciding which muscles have to be evaluated is a trade-tffden complexity and
accuracy of interpretation.

The muscles selected for the exoskeleton of this work widirtoPCA are: (1)
the rectus femoris (8%), (2) vastus medialis (15%), (3)uskdteralis (20%), and (4)
the semimembranosus (10%), (5) semitendinosus (3%), aicgs femoris (10%).
Those muscles are shown in figure 6.9. They cover a total of@@fe cross-sectional
area of all thigh muscles. The remaining area is occupiechbyastus intermedius
(13%), gastrocnemius (19%), sartorius (1%), and gracil$)([Win90a]. While the
latter two are neglectable due to their small force outpgug, gastrocnemius is not

8Distributed by GS sensors / disynet, http://www.sensaier2007.
9From Analog Devices, Inc., http://www.analog-devicesga007.
10pelsys Inc., http://www.delsys.com/Products/EMGSess8Specifications.html, 2007.

72



6.4 Sensors

1 - rectus femoris

3 - vastus intermedius
5 - vastus medialis

7 - vastus lateralis

12 - sartorius

1 - biceps femoris

2/5 - caput longum/breve
4 - semitendinosus

11 - semimembranosus

cross—section

cross—section

Figure 6.9: Superficial muscles of the frontside of the thigh (left) ahd backside
(right), together with cross-sectional views (adaptednf{®la03]). The dark colored
muscles are responsible for flexing and extending the khegjray shaded are moving
the hip and ankle joints. The cross-sectional view of themsdr muscles (left) shows
the vastus intermedius hidden beneath the rectus fematithanvasti.

recorded because it is a muscle spanning the knee and amkleNscle activations
cannot simply be related to the knee joint without taking iatcount the ankle. The
vastus intermedius unfortunately is not recordable witfese electrodes. Itis located
along the frontside of the femur below the rectus femorig,vhstus medialis and the
vastus lateralis.

Figure 6.8 shows the activation pattern of the selected lasi$or some example
movements. Especially for the extensor muscles it can be thee recording of all
three muscles is required since they are active at diffeénmiels.

Choosing the correct position and orientation accordintpéamuscle fibers is very
crucial to this application. Bad sensor placement resnlta@asurements that do not
reflect the force production. General placement recomntenmdaare published for
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example in [Luc07], and a guide to sensor placement for iddad muscles can be
found in [HFM*99, FHOQ].

6.5 Data Processing Unit

The single board computer is a Commel LE-37@quipped with a Pentium-M735
1.7GHZ? and 1GB of RAM. The operating system of the SBC is SUSE®r8nning
the real-time linux RTA}* with kernel 2.6.15.

The realtime data acquisition system was written as partgdlama thesis [Wal06],
and the software evaluating all sensor data and computegadhtrol signal is de-
scribed in chapter 4.

In the system presented here, the torque control loop wasimgas a kernel module
with 1kHz, the model evaluation and support computation masing in user space
in non-realtime with approximately 100Hz.

6.6 Signal Flow

The hardware structure is organized around a central SRhatisonnects all compo-
nents, as shown in figure 6.10. Those components are the B80isplay and keypad
unit, the sensors and the actuator. The safety system iectathto the bus as well,
but only to listen for a heartbeat of the computer.

The SPI bus is a master-slave bus where the SBC serves as sher nadking to
all other devices. Since the SBC has no direct SPI interacétmel MEGA32 mi-
crocontrollet® acts as interface between the SPI bus and the parallel ptnt SBC.
All sensors are connected to the SPI-bus by A/D-converfellXZ) where necessary.
The Philips UZZ9001 (UZZ) is an integrated circuit that exibs and postprocesses
the output of the Hall sensor, and performs A/D conversio/A-converter (DAC)
is connected to the bus to create the analog control sign#héopwm-amplifier that
powers the actuator. In addition to that, a display and keypdinked to the bus to
allow simple user interaction, like starting and stopping system and to adjust the
support ratio.

6.7 Safety Concept

The safety concept is a bundle of different measures whiehgmt and handle system
failures, and minimizes consequences for the operatorftareiit levels, depending on

HCommate Computer Inc., http://www.tcommate.com.tw/nzéthiE-370.pdf, 2007.
Intel Corporation, http://www.intel.com/products/pessor/pentiumm, 2007.
13SuSE Linux can be found on hitp://www.novell.com/linuxJpZ .

14RealTime Application Interface, https://www.rtai.orgQ07.

15Atmel Corporation, http://www.atmel.com/, 2007.
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Figure 6.10: Overview of the hardware structure of the control systeml:cam-
ponents use the central SPI bus that connects all sensotb@iadtuator. The SBC
acts as the master and collects all sensor data over the beshardware watchdog
monitors the activity on the bus, and switches to the hardwacontroller as long as
the single board computer does not send commands to the pmptifiar, assuming
an SBC failure.

the layer where they occurred. This safety system allowsmx@nts and application
of the exoskeleton in life-like environments.

But it has to be pointed out that a secure fallback state doesxist for an exo-
skeleton. Depending on the movement in which the error @gdbe system cannot
determine a safe position on its own to avoid stumbling andamtain a stable pose.
For example, extending or flexing the knee joint by defauljimunbalance the oper-
ator, and holding the knee angle fixed can lead to stumblieg aw obstacle or a step.
Nevertheless, some actions can be performed to minimizeecuences of a failure.

The following subsections are arranged in order of faultetiag, explaining possi-
ble error sources and countermeasurements.

Software

In the software layer all sensor data is range-checked appeci to sensible bound-
aries. The calculated desired force as well as the raw otdgbe D/A-converter are
clipped in case of errors in the calculation of the desirgapsuit.

This minimizes bad system behavior if connection to serisdost or EMG sensors
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are not well connected to the skin anymore. But of courseinteigretation of valid
sensor signals can result in natural movement, which clitestine operator stumble
over obstacles. But since the algorithm presented in chdpsevery robust, and since
the operator is in direct and permanent control of the peréat movement, this should
not happen. But it cannot be guaranteed or mathematicailyepr.

Hardware

The external hardware watchdog is permanently monitoheghip select line to the
D/A-converter of the actuator. If the chip is not selectedddew hundred millisec-
onds (adjustable), the watchdog assumes that the SBC heedtavorking properly.
It switches the input of the pwm-amplifier from the D/A-cones connected to the
SPI bus to a hardware P-controller through a CMOS switch awishin figure 6.10.
This P-controller gets the current actuator force as feeddbad controls the output
signal to the pwm-amplifier in such a way that a preset for¢eéen thigh and shank
is applied. This force was set to zero during experiments withealthy operator
who can stabilize himself, allowing unhindered motion vilk leg if the computer is
locked up or the SPI-bus is broken. No force support is géeera that case. If the
SBC is sending commands to the pwm-amplifier again, the watglswitches back
to software control. This is not always a desirable solytespecially if the system
fails while the operator is supporting himself only with thetuated leg. On the other
hand, locking the actuator may lead to stumbling in manyrothses. Due to weight
and power consumption limitations, adding a second systatrtins in hot-standby
is not an alternative. But the target force can also be sewtdee above zero so that
the actuation adds some constant extension force to givegrator a chance to react
properly and support himself or herself. But in any casentiogement will not be as
expected by the operator and stumbling may occur.

Mechanics

If for some reason (a short circuit or something similar) ¢batrol signal of the ac-
tuator is unreasonably large or will command the actuatairitce with full power in
one direction, the last safety protection for the operatertiae joint angle limitations
that are stricter than the natural range of motion of the koie¢. The maximum ac-
celeration is limited through the maximum moment the mogor generate and this is
well within safety limitations. Furthermore, the actuabas its own mechanical limi-
tations. For the knee flexion this limit is reached beforehimman or exoskeleton joint
limits are reached. The limit of the extension is reacheghdly after full extension,
but deformation of the orthosis protects the operator i thhge. If the actuator is
working with full force against its own mechanical limithet gear-belt that connects
the electric motor and the ball screw will tear apart beforg lsarm is caused.

In case of a complete power failure, the exoskeleton camodiyze support actively.
But the friction of the actuator is rather large, so that islaot immediately give way
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to undesired knee flexion. On the other hand the actuatot isomapletely locked, and
the knee joint can be moved from outside in this case.

6.8 Summary of Properties

The exoskeleton presented in this work is optimized for tb&réd experiments. The
movements of interest are sit-to-stand, walking and climglsitairs. It limits the move-
ments to rather low velocities, to allow the actuator lirdite size, weight and power
to produce enough force to support the strenuous parts afnthements. During
walking the required forces are rather low, and the otherenmnts are better suited
to show the performance of the system.

The system itself is completely mobile. The autonomousingmtime is mainly de-
pending on the power consumption of the actuator and the $B(le the consump-
tion of the first one highly depends on the performed movemantl support ratio,
the latter one has a permanent, rather large consumpti@prBsented algorithm can
also work with an SBC with lower computational power requiriess energy.

The experiments presented in the following chapter 7 vehft the exoskeleton
construction is suitable to perform the desired movemeiiits adequate support to
allow an analysis of the cooperation between the human tieaad the machine.

77



6 Exoskeleton Hardware

78



/ EXperiments

This chapter presents experiments with the exoskeletormsd& lexperiments are di-
vided into two groups: The first group is used to perform analyae the calibration
algorithm, and the second group presents experiments méthdtuated exoskeleton.

In the first group recorded data is used to calibrate the mpaeimeters, and the
performance of the model is tested with several measurem&hée complexity of the
model is justified by pointing out the improvements by inchgdcertain properties.
Furthermore, the model prediction characteristics aratjied for data not previous-
ly used during calibration. In the second group the behasfitihe whole system, that
is, the human operator using the exoskeleton, is analyegdsding common move-
ments like walking, climbing stairs and the sit-to-standverent. The support for
the different phases of the movements is discussed, ances$éting reaction of the
human. For those experiments the performance of the systeamwdole is hard to
quantify. The difficult question is: How can the interfaceldhe intention prediction
be evaluated? An exact "reference desire" in a natural@mvient is not available to
compare the prediction with. But methods applied in thisknare explained as an
introduction to the experiments with actuation in sectidhZ.

For both groups, representative data is shown in greatail tieéxplain the behavior
of the system at some crucial points. This is very importaget a good understanding
of the matter. Only after that it is useful to look at the pemiance as a whole.

During all experiments it was tried to avoid muscle fatigu®tigh appropriate paus-
es, since it is not considered in the model and can influerecquhlity of the results.

The chapter is organized as follows: Section 7.1 describesalibration experi-
ments, including the model analysis and justification,ieact.2 presents the system
behavior of the actuated exoskeleton, and section 7.3 sissuthe experiments and
summarizes the overall system behavior.

In most of the following diagrams the knee angle is shown. A&e&angle of O
indicates full extension, and negative values indicateKtexion.

7.1 Calibration

As described in section 5.1, the calibration is divided idétermination of geometry
parameters and determination of EMG-related parametess.bdth operations, the
operator is sitting on a chair in an upright position perforgnisometric contractions
with extensor and flexor muscles of the knee under differagtes as described in
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section 5.2. The leg with the exoskeleton must not have ay fontact below the
knee joint.

During every measurement, the muscles have been contfacie five times with
a large, but submaximal force. In-between the measurensbots pauses have been
inserted to avoid muscle fatigue.

The calibration example described in this section was peréd on data from the
following exercises:

1. isometric extension (trials EO-E4)atl01°, —86°, —70°, —47°, and—27°.
2. isometric flexion (trials FO-F4) at95%°, —73°, —64°, —47°, and—33°.

The geometry optimization was performed as described imoges.5, with different
properties activated to show the performance of the modéerihat, the EMG-to-
force parameters have been optimized according to sectoaid optimization of the
geometry calibration and the EMG calibration has been tegda refine the solutions
as described in sections 5.5 and 5.7.

Results of the calibration are presented and analyzed ifotlogving sections.

7.1.1 Geometry Calibration

It should be pointed out onesmore that the geometry cailibrad responsible for es-
tablishing consistency of the EMG-to-force relationstapsoss different joint angles.
According to section 5.5 the consistency is improved jfgiven in equation 5.14,
is reduced for every muscle. To analyze this, and to juskifyuse of the complex
body model and some properties, the geometry calibratistbban performed in five
versions. Every version turns off specific features.
The first version does not include the musculotendinous maidall. The knee

torque contribution of a muscle is calculated by

T =rFMa(u) (7.1)

wherer is the moment arm around the joiri;" is the maximum isometric force at
optimal fiber length, and(u) the activation of the muscle.

The second version includes the musculotendinous modedgdas not calibrate the
tendon slack length scale of the muscle: The scale is sgt-t01.0 for 0< i < N,
with N being the number of muscles. The third version includes thgcmotendinous
model, but omits the influence of the passive fofgf, and the pennation angle,
The fourth version only neglects the pennation angle, arallyinthe fifth version
incorporates the complete model as described in section 4.3

Table 7.1 shows the minimum averaged standard deviatiookexgiation 5.14 for
the different versions. The resulting tendon slack lengties are given in table 7.2
(session Sb5). It can be seen that the complete model canerdldewalues by more
than fifty percent compared to the absence of the model. $haspecially important
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7.1 Calibration

without | uncalibrated calibrated,| calibrated,| complete

geometry| geometry| noF", no@ | without ¢ model

rectus femoris 50.1 9772.7 24.8 23.5 23.3
vastus medialig 36.5 38.3 11.9 12.4 12.4
vastus lateralis 50.2 53.5 22.3 20.6 20.0
semimembran. 75.9 224.6 86.5 86.5 55.5
semitendinosus 24.1 49.3 224 22.2 22.3
biceps femoris 66.5 229.4 47.2 43.4 43.4

Table 7.1: Minimum o of different versions of the geometry calibration for the in
dividual muscles, as detailed in the text, multiplied by #pproximated=" of the
individual muscles (refer to section 5.5). The unitis [N].

for the extensor muscles, since they are producing largee$oduring the considered
movements, and bad estimations result in system behawabisthard to predict for the
operator. The results in table 7.1 also show that the in@tusf the musculotendinous
model without a proper calibration can produce resultsdahafar worse than without
the model at all. This is due to the strong effect of the fdesegth relationship on
the force output, and the sensitivity of the model to the tenslack length and the
associated scale. To show this more clearly, figure 7.1 tjrgjfows the individuab;
as a function of the tendon slack length scale. As can be #egaminima lie in very
narrow valleys for most muscles.

Figure 7.1 (left) shows which part of the force-length csri® covered with the
angles from this particular calibration. Both figures explhe results from the cali-
bration very good: The scale for the rectus femorig)is< 1.0 resulting in a largeo
of the uncalibrated model as shown in table 7.1. Using thiereaéd geometry model
without the passive force and pennation angle redacesassively, and inclusion of
the latter two improves the results even further. THg") curve for the vastus me-
dialis is not so steep fos; < 1.12, so using default values from literature does not
produce ao as large as for the rectus femoris. It is similaradavithout the model
at all. But applying the calibration reducesto 33%. Inclusion of the passive force
and the pennation angle makes the result slightly worsealsiall errors in the mod-
el. Leaving the geometry model out and using uncalibratedrpaters for the vastus
lateralis yields similar results, but inclusion of the badition reduces to 44%, and
inclusion of the passive force and pennation angle suaedgsiown to 40%. The
minimum of the semimembranosus lies in a very narrow vatkeslting in a larges
for the uncalibrated parameters. Inclusion of the calégajeometry model without
the pennation angle does not improve the result compareat tesing the model at all.
The pennation angle at optimal fiber lenggh, of this muscle is 15, and including this
property reduces by approximately 27% compared to not using the geometry mod-
el. Inclusion of the model for the semitendinosus reduzdsy approximately 10%
compared to not using the model, and by more than 45% compatkd uncalibrated
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Figure 7.1: Left: ranges of the normalized muscle fiber lengths for theimim and
maximum knee angles during calibration. Right:during calibration of the tendon
slack length scal@ for the rectus femoris (RF), vastus medialis (VM), vasttsrkis
(VL), semimembranosus (SM), semitendinosus (ST), angit@moris (BF). Due to
simplifications in the model, the semitendinosus has nomum within the interval.

model. The different knee angles of this calibration did sto¢tch the muscle signifi-
cantly so only the plateau region of the active force-leragtive is covered. Inclusion
of the passive force and pennation angle has almost no effaaally, the complete
model reduce® for the biceps femoris compared to not using the model by 30%,
compared to the uncalibrated model by more than 80%. Thevedssce has a small
influence here, and the pennation angle is 0°.

When looking at the minimum values ofit has to be pointed out that inclusion of
a calibration is definitely required if a biomechanical miadeuised. The inclusion of
the model without a proper calibration of the parameter gadyce results far worse
than without the musculotendinous model at all.

The improvement of the calibrated model compared to nogu$ia model can best
be viewed with the muscle force plotted over the postpraEdMG signal as shown
in figures 7.2, for the extensor muscles, and 7.3, for the flaxgscles. The diagrams
show the different isometric contractions with muscle éoptotted against EMG sig-
nal. The left column shows the geometry calibration withihie musculotendinous
model, the middle column shows results from the uncalibratedel, and the right
column shows the complete calibrated model. Obviouslyctresistency is improved
very much, since in the right column of both diagrams the esitvave a very low di-
vergence. This is especially notable for the extensor nressahd the trials where the
leg is only slightly flexed (trials E3, E4): The effect of thaustle fiber force-length
relationship has a strong influence here. According to diagr.1 (left), the extensor
forces are modulated with values of the force-length retesthip close to 0.6, because
the muscle fibers are very short in this pose. If the geometgiehis omitted the
resulting muscle force is overestimated if the knee is ade¢dnand underestimated
for knee flexion. This becomes obvious by looking at one eabjtdiagram in the
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Figure 7.2: Effect of the geometry model on the EMG-to-force relatidpgior the
rectus femoris (top), vastus medialis (middle), and valstiggalis (bottom). The dia-
grams show the individual muscle forces, based on the mexasunts, plotted against
the postprocessed EMG signal under different knee anglassitting position. The
left column shows the relationships without taking into@att the musculotendinous
model. The middle column shows the model with uncalibrate@dmeters taken from
literature, and the right column shows the complete modil valibrated parameters.
It can be seen that with the calibrated model, the force ptiedi based on the EMG
signal is much more consistent across different knee angles
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Figure 7.3: EMG-to-force relationship of the semimembranosus (tag)isendinosus
(middle), and biceps femoris (bottom). Left column: no getnyymodel, center col-
umn: uncalibrated geometry, and right column: calibratedngetry. As can be seen,
the improvement is not as significant as for the extensor lasistt can be seen, that
inclusion of the musculotendinous model without a propdibcation algorithm for
the tendon slack length scales does not improve the conejstd the EMG-to-force
relationship.
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7.1 Calibration

left column of figure 7.2. Averaging those curves would yi@ldEMG-to-force rela-
tionship, although a very inaccurate one. Applying thisveuior the EMG-to-force
computation for all angles instead of the original curvesrestimates all forces for
angles with corresponding curves below the averaged, addrastimates all forces
for angles with curves above the averaged. This is solvetidgéometry calibration
as can be seen in the diagrams of the right column in the sanme fig

A similar effect of the influence of muscle fiber length can kersfor the knee
flexor muscles, especially for trial FO in the left column gfuire 7.3: In that case the
knee is flexed and the fibers are very short. Without the gagmeddel muscle forces
in this configuration would be overestimated.
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Figure 7.4: Repeated optimization of the geometry and EMG parametergtsein
a quick convergence of the resulting tendon slack lengtlescé&tep 0 indicates the
initial values. The scales are dimensionless.

Repeated optimization

After the EMG calibration has been performed, the geomethypation was repeated
with the same input data to refine the torque distributiorhwiite actual activation
functions and to incorporate the influence of the passivectadsrce. After that, the
EMG calibration has also been repeated. But this repetitamonly been performed
once to produce the values presented in the diagrams heegpteor figure 7.4. This
figure shows the quick annealing of the geometry parametergeh iterations over
both calibrations. Although they do not converge towarddixalues, one iteration
is sufficient to obtain feasible values. Even a repetitiomtdude the EMG-related
parameters into the torque distribution has no significailueénce. More iterations do
not improve the geometry optimization.
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Consistency across different sessions

As stated above, the geometry parameters are subjectammudsut do not regard the
physical condition of the subject. But since the calibmatid those geometry param-
eters utilizes the EMG-to-force relationship, it has to teestigated if the calibrated
geometry parameters are consistent across differenbsessi if they are influenced
unintentionally by variable properties related to the EMGardings. Experiments to
investigate this have been separated by at least four dayede each other. Results
from five sessions are summarized in table 7.2. The table slilogvscale of each
muscle for every session S1-S5, together with the averagieecdcaless, and the
standard deviation of the scalmsﬂf, for each muscle separately. It can be seen that
the scales have a very low variance across the sessions. edpéially low for the

S1 S2 S3 S4 S5 éf Og
rectus femoris 0.895| 0.890| 0.900| 0.895| 0.885| 0.893| 0.00570
vastus medialis | 1.135| 1.110{ 1.100| 1.120| 1.105| 1.114| 0.01387
vastus lateralis 1.100| 1.075] 1.085| 1.090| 1.075| 1.085| 0.01061
semimembranosus1.085| 1.070| 1.070| 1.080| 1.080| 1.077| 0.00671
semitendinosus | 1.250| 1.250| 1.250| 1.220| 1.250| 1.244| 0.01342
biceps femoris 1.130| 1.115| 1.105| 1.125| 1.125| 1.112| 0.01000

Table 7.2: Optimized tendon slack length scales from different expernital sessions,
S1-S5, with several days in-between, with average vafieand standard deviations,
gg:an obvious consistency can be seen. The scales are dimkssio

rectus femoris and the semimembranosus. Since the mingnravery narrow valleys
of the geometryr () curves, this is very important. Table 7.3 shows the EMGteela
parameters of the rectus femoris of those sessions. Cangttie standard deviations
to the deviations of the geometry parameters, in relatidgheéacorresponding average
values, reveals that the geometry calibration is insemsit variances in the EMG
measurements. This increases the trust in the model androsrifiat the geometry
needs only to be calibrated once for every subject.

S1 S2 S3 S4 S5| avg.| std. dev.
A -0.750| -0.606| -1.901| -1.750| -0.837| -1.169| 0.607
FNIN] 593 776 516 604 735 645 107
RV] 0.026| 0.024| 0.028| 0.037| 0.027| 0.028| 0.0051

Table 7.3: EMG-related parameters of the rectus femoris with averadaees and
standard deviations for the sessions. The differenceseopdinameters are large be-
tween sessions, taking into account the circumstancesibleddn section 3.3. The
maximum force F", is subject to large variance because the experiments lesre b
performed with submaximal force. The shapeis dimensionless.
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7.1 Calibration

7.1.2 EMG-to-Force Calibration

The EMG-to-force calibration was performed after geomptasameters had been ob-
tained from the geometry calibration. It should be kept imdnihat the EMG-related
parameters are subject to change from session to session.

Calibration of the EMG-related parameters has been peddmwith the exponen-
tial activation functiongexp, and the piecewise activation functiaa,, for every mus-
cle. Table 7.4 shows the resulting parameters and erroesalAs can be seen, the
piecewise activation functions performs always worse.dfdurther experiments the
exponential activation has been used.

The actual functions corresponding to the calibrated patars are plotted in fig-
ure 7.5, together with all entries of the tables of each neugmmpare to figures 7.2
and 7.3). As can be seen for the rectus femoris and semi@suBrthe curves have
a force close to zero for EMG values far greater than zero. ightrbe feasible to
calibrate the EMG offsety,, of every muscle instead of measuring it when the muscle
is relaxed. In that case, the curves would be shifted to tiedlied the curvature could
be better approximated. On the other hand this small errghhtie corrected through
a different distribution of the reference torque among thuscdes.

Al RV]|FMN]| E(aexp | @Vl | MY ] E(apw)
rect. fem. | -0.837| 0.027 735 | 14003.90| 0.491| 26.46| 91269.79
vast. med. -2.066| 0.045| 1225| 7332.17| 0.483| 16.42| 21465.34
vast. lat. | -2.174| 0.062| 1419 14316.69| 0.417| 13.32| 33614.27
semimem.| -2.083| 0.049| 1218| 38159.13| 0.573| 12.58| 173250.67
semiten. | -3.158| 0.032 251 | 9949.73| 0.942| 2.58| 147191.09
bic. fem. | -2.001| 0.041 852 | 19856.89| 0.611| 13.73| 158541.31

Table 7.4: Calibrated parameters of the muscles from session S5: gh@pmension-
less) of the activation functiom(u), expected maximum postprocessed EMG signal,
R, and maximum isometric forc&". For the piecewise activation there are two ad-
ditional parametersy (EMG signal at transition), and the slope of the linear morti

m.

Beside the shape of the EMG-to-force functions, the maxingometric forces
are important parameters. Comparing those values to tlaecdfiected in [DLH 90]
from various sources, as shown in table 7.5, reveals irttegesimilarities. It has
to be kept in mind that the isometric trials for the calibvatihave been performed
with submaximal force, but the muscles in the model also takex certain shares
of muscles which are not included in the model but are medsilm®ugh the force
sensor.

Comparing the forces to values from the literature is pentx here only to check
if the order of magnitude is correct. Fortunately, this is fhct. Also, the order of
the strength is consistent: Weak muscles in literatureespond to muscles with low
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Figure 7.5: Calibration of the EMG-to-force parameters: The diagrahwsthe en-
tries of all tables of the particular muscle, together wihté interpolated EMG-to-force
function (solid line). The muscles are from top left to battaght: rectus femoris, vas-
tus medialis, vastus lateralis, semimembranosus, sedimiesus, and biceps femoris.
As can be seen for the rectus femoris and semitendinosusdudtion of an offset
parameter could improve the calibration.

forces of this work, and likewise for the stronger musclesg@uld be expected from
the torque distribution based on the %PCA values.

It has to be kept in mind, that the most important goal is to endde model con-
sistent in itself and the measurement setup through paearoptimization, but not
necessarily to any external values.

7.1.3 Model Adaptation and Prediction

In this section the adaptation of the model through the catiibn is examined, and if
the calibrated model can be used for predicting the regukiimee joint torque for new
data that was not used during calibration.

Model Adaptation = The adaptation of the model can be evaluated with the torque
errorEorque, Which is the average of the difference of the tordggc, based on EMG
evaluation, and the reference torqdg, based on the force sensor, for all measured
values,
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Fo'[N] | F"[N]
rectus femoris 735 780
vastus medialis 1225 1294
vastus lateralis 1419 1871
vastus intermedius 1365
semimembranosus 1218 1030
semitendinosus 251 330
biceps femoris 852 | 717, 402
gastrocnemius 1113
sartorius 104
gracilis 108

Table 7.5: Maximum muscles forces from literature compared to caldmtavalues.
Left column: results of the calibration, right column: deaken from [DLH"90]. The

biceps femoris is split into the long head and short headernvéiues from literature.
Fields left blank indicate muscles which have not been medexplicitly.

1 D-1
Etorque = 5 Z) (Trt — Temay) » (7.2)
=

whereD is the number of samples of the trial.

Table 7.6 shows the average torque error of each trial. Al¢trials have also been
used for the previous geometry and EMG-to-force calibratibhe lower the torque
error, the more accurate the model can compute the kneeetdvaged on the EMG
signals.

Two typical replays of isometric trials are shown in figuré Ttrial E4) and 7.7
(trial F2). The EMG signals have been filtered with a lowpassadf frequency of
1.6Hz. The upper diagram of each figure shows the referemqadaomputed from
the force sensor readings together with the predicted édogaed on the EMG-to-force
computation. The middle and bottom diagrams of each figuoevshe contributions
of the individual muscles to the total torque computed inttpediagram. In figure 7.6
it can especially well be seen betweent2s<16s how the different muscle activation
begin and end at different times but overlay to a smooth ®omiput which resembles
the reference curve strongly. At other times of the sames;uhis resemblance is not
so close: For example, betweenk8s<12s the reference output is almost the same
as during the contraction mentioned before, but the fittihthe prediction curve is
not so accurate. Slightly lower activations of all extensmscles sum up to torques
lower than the reference values. This can also be seen attoties of the presented
curve. Throughout the trial, all flexor muscles show a camstauscle tone slightly
above the relaxed state (the activation of the relaxed stasedetermined as the offset
and has been eliminated). Thus,nregordedflexor activity influences the result of the
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Trial | E[NM | EmaxNM | Rr[NM
EO| 9.0 25.8] 50.0
EL| 10.8 350] 61.8
E2| 115 342 618
E3| 7.0 252| 583
E4| 6.1 121 644
FO| 54 18.8] 382
F1| 9.3 20.7| 56.1
F2] 7.9 246| 57.7
F3| 84 21.1] 57.9
F4| 5.9 195 525
F5] 6.0 193] 4509

Table 7.6: The table shows the adaptation of the model to the indivithisds. E is
the average error of the torque prediction for the trial, Bpdy is the maximum error
of the same trialR is the torque range covered during this trial.

trial. But why is the extensor torque not predicted apppty atall times? There
are many possible reasons for this. Some of them are:

» The EMG-to-force functions are inaccurate, and the muactaation pattern
is slightly different: The recorded muscles produce moreddhan predicted,
and the increase of muscle activation in some muscles (wttlers are a little
less active) is not appropriately reflected through the Etd@&drce functions
because the curvature is too high (or vice versa).

» The extrapolation of the activity measured by a singletebele to the whole
muscle could result in an inaccurate force prediction. T&isspecially true
for multi-headed muscles, like the biceps femoris, whidmiohes into a "short
head" and a "long head".

* An extensor muscle that is not recorded can contributedigpie that was not
predicted at certain times. This cannot be investigateld main-invasive meth-
ods.

Unfortunately, the main reason cannot be determined waretperimental setup.
But it can also be a combination of all factors mentioned. ustrbe stated, that
prediction errors in this order can occur. It will be dise$n later sections, if the
resulting system behavior is negatively influenced.

During the trial F2, presented in figure 7.7, other intergséirtifacts can be noticed.
First, cocontraction of the flexor and extensor muscles easelen: During the activa-
tion of the flexor muscle group that produces the main torthegxtensors are also
activated. But since this is taken into account by the calibn, the predicted torque
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Figure 7.6: Replay of the trial E4 with isometric extensor activatiomeTop diagram
shows the reference torque plotted against time as cagécufadm the force sensor
and knee angle, together with the predicted torque, basettieoevaluation of the
EMG signals and the knee and hip angle. The middle and botiagraims show
the individual contributions of the muscles to the predictcurve from the top-most
diagram.
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Figure 7.7: Replay of trial F2 with isometric flexor activation. The tojagram shows
the reference torque plotted against time as calculatexd fine force sensor and knee
angle, together with the predicted torque, based on the:aah of the EMG signals
and the knee and hip angle. The middle and bottom diagrams steindividual

contributions of the muscles to the prediction curve fromtip-most diagram.
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during the increase of muscle force is predicted appragyiaBut during decrease of
the muscle force it can be seen that the predicted torquesdasger than the refer-
ence torque. This is even amplified through the longer lgsiktensor activity. The
guestion again is: Why is this behavior not predicted? THigaat appears often in
measurements, especially for the flexor muscles, and is speaial case. At first,
on may attribute this error to the neglected activation dyica that is reported in, for
example [ZW90]. But in the presented extensor measureraedtsome trials with
different joint angles for the flexor muscles, this effechd visible. Thus, it is more
likely to be the effect of unmodeled muscles which are egjlg@ctive at certain joint
angles. Since an obvious early decrease of flexor musciatgcian be noticed, it can
be assumed that this muscle is slightly longer active tharmthers.

The adaptation errors for the different isometric trials smmmarized in table 7.6.
The values used for computation of the torque errors aretakbn at times when the
absolute value of the reference torque after eliminaticheigravity offset was above
5Nm to avoid sugarcoating the errors during muscle inggtivi

Model Prediction ~ We have seen that the model can adapt to the operator for given
trials. But in real environments, the EMG curves that arduatad are not known in
advance and cannot be used during calibration. The systhavioe with previously
unused data has to be investigated.

Since the experimental setup only allows isometric tridiewa reference torque
needs to be determined, the prediction error was againnpeetbin an upright sitting
position. The knee angle was flexed-td5°, and both, extensor and flexor muscles,
have been activated in a random pattern, as shown in figur&gcially of notice is
the cocontraction at points of transitions between actvatf the flexor and extensor
group, and vice versa, as for examplet at21.5s.

As can be seenin table 7.7, the average prediction erroriaroinum torque errors
are similar to the adaptation errors in table 7.6. Again tnerevas only determined
whenever the absolute value of the reference torque wasdhexhreshold.

Angle [ [ EINM | Ema{NM | Rr[Nm
-45 6.3 20.4 119.9

Table 7.7: The table shows the errors that occurred during the predicif torques
not previously used during calibratiok is the average error of the torque prediction,
andEmaxis the maximum erromRy is the torque range covered during this trial.

The example session presented here is not a special casas #elected, because
it features typical results of experimental sessions. fitlwa concluded that the model
can predict the resulting knee torques based on EMG sigrais the operator to a
certain degree.

But some inherent problems remain which have been mentiabhede. Further-
more, the unsteadiness of the EMG signal during contragfimses a potential prob-
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Figure 7.8: Arbitrary isometric muscle contraction pattern of the est@ and flexor

groups at-45°. In the top diagram the reference torque based on the fons®smea-

surement is plotted together with the torque based on the HEdAGrce computation
against time. The middle and bottom diagrams show the dwrioins of the individu-

al muscles. The EMG signals are lowpass-filtered with 4HAtisthe difference in

smoothness compared to figures 7.6 and 7.7. A good cornelatithe reference and
prediction curves can be seen.
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lem: If the system reacts too quickly to those, it can vibratan undesired manner.
This can obviously be suppressed by decreasing the lowpassfdrequency during
EMG signal postprocessing. But since the frequency of tlhesélations in the EMG
signal are low, this would increase the latency of the systebstantially (in the or-
der of 500nsand more). The experiments presented in the following sectveal if
those inaccuracies are a real problem for controlling tlesksleton.

7.2 Torgque Controlled Experiments

In this section, experiments are presented with force suiymon the exoskeleton. As
was motivated in the introduction, a focus is put on movemeheveryday life, which
can be substantially supported by the exoskeleton. Thahiste the knee flexion and
extension is important and requires larger torques.

Each movement is discussed in a separate section, with & f@twsystem be-
havior and human-machine interaction. For the purposeisfwibrk, the discussed
movements are: free motion with the leg (section 7.2.2)%csgtand movement (sec-
tion 7.2.3), stair climbing (section 7.2.4), walking (Sent7.2.5), and an arbitrary
combination of the movements (section 7.2.6).

Performance evaluation of the system during the supportegments is difficult.
The following section 7.2.1 explains the methods applie@ he

7.2.1 Methods of Performance Evaluation

It is very hard to evaluate the exoskeleton system with aaabive criterion in a real
world environment. In the context presented here, as a pameiifier, a general de-
mand is to support the desired movement with a substantgeonhile still allowing
the operator full control over the movement.

Quantifying the performance regarding this demand is naside immediately:
First, the desired movement is not readily available to camphe resulting movement
to. Only the task is known, but not the exact desired trajgctdnd second, since the
human is in the control loop, and full direct control is alledy the outcome of large
force support depends very much on the adaptability of teeadpr. Since the healthy
operator usually has a muscle activation pattern learregdattows to perform the task
without the support, he or she has to adapt to the externglostymand decrease the
own force contribution appropriately, as long as no addédldoad is carried. Both
force sources, human and exoskeleton, have to work in cabperto perform the
desired movement. If the operator feels unwell becauseeofdite produced by the
exoskeleton, he or she cannot take full advantage of theostighe actuation rather
disrupts the movement performed by the operator, and theatuewill get tensed
rather than relaxed.

In this work, the performance is evaluated with the follogvgtheme: The resulting
knee angle trajectories with various support ratios pibdigainst time are compared to
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the trajectory without force support during which the exaskon evades the leg. This
is not performed numerically, since durations of the ddférphases of the movement
can be different, distorting the results. Scaling partshefrinovement in time would
distort the relationship between acceleration of body sedsiand muscle forces, due
to inertia, also leading to a wrong evaluation.

Instead, the trajectories are compared for the generakslzay it is searched for
unusual dents in the trajectories and corresponding mastieations. Those dents
are an indicator for unusual muscle activation which is aimepl by the exoskeleton.
These rapid changes in the muscle activation pattern itedtbat the operator is sur-
prised by the external force, or feels unwell and tries totexact the force produced
by the exoskeleton.

In the diagrams of the experiments the support of the exetkeis shown as a re-
sult of the measured torque of the actuation. kssumedhat this additional torque
is helpful for the movement, because it is brought into thetesy and cannot simply
vanish, and it acts in the same direction as the torque pestlg the muscles, but it
could, in theory, be counteracted by muscles which are morded. But the muscle
activations of the recorded muscles are shown to be lowenilidout support. This
seems to support the theory that the contribution of theleteton relieves the opera-
tor of some torque. But again: also this reduced muscleatativcould be taken over
by muscles which are not recorded. Only a subjective re@ortreveal if the muscle
activity is very unusual or feels awkward.

Experiments can be performed which measure the energy it of the whole
body directly, but this was not performed. But also if the skadeton transferred load
to other muscles not reducing the overall effort of the huyriaa exoskeleton can
still be helpful, since those muscles may be more capabledbpning a task, for
example, the unsupported leg for motor impaired people.

As a conclusion to the above argumentation, every expetimaommented with
a subjective impression of the operator. Although during ¢burse of this project
many experiments with force support have been performedppierator can still be
regarded as a novice compared to the intended everyday, UBggeith some trust in
the exoskeleton and control system.

7.2.2 Free Motion

This experiment is mainly presented here to justify the rededking into account the
muscle geometry to improve the consistency of the EMG-todwoelationship, which
is realized in this work through the geometry model of the ces
The experiment was performed as follows: The operator tsgibn a chair with

both feet on the ground and a knee joint angle of approximatél°. Three markers
are fastened to a vertical bar which is located 70cm in fréthi@chair, with distances
of 20cm, 40cm, and 60cm above the floor. The task is to raissupported leg, touch
the lowest marker, flex the knee, extend it to touch the middieker, flex the knee,
extend it again to touch the top marker, and put down the |éds thsk also involves
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flexing the hip joint. It was chosen because itis a very simpm&ement, but requiring
target oriented leg movement as during arrangement of gjsgaigor to standing up or
positioning the foot to step over an obstacle. The task has performed with support
ratios of 0.00, 0.25, 0.50, 0.75, and 1.00. The lowpass &equof the EMG filtering
was set to 1.6Hz, which is motivated in section 7.2.3. Thedhnigle of the model was
set to 90. During the first trial, the complete calibrated model wasduto verify if
the task could be fulfilled with the system at all, and to as$gitig accuracy. The
second trial was performed without taking into account thescte geometry during
computation of the support. This allowed investigation tué bverall effect of the
geometry model on the performance of the system for this. td&&#sults from the
experiments are shown in figure 7.9. All diagrams show thesljpat angle, the
torque contribution of the operator estimated from the EMghals, and the torque
contribution of the actuation of the exoskeleton. The letumn contains diagrams
from the trial with the complete model, the right column @ns diagrams where the
geometry model of the muscle was omitted.

In all diagrams the knee joint angle starts at arowid.(’, when the foot of the
supported leg is on the ground. After that, the hip is flexed thie knee is extended
to touch the lowest marker. This is indicated by the first mmaxn of the knee joint
trajectory. After that the knee is flexed and the leg is furtiagsed, before the knee is
extended again to touch the second marker, as indicatectlsetiond maximum. This
is repeated for the third marker before the foot is put dowtheground again.

In the top row the support ratio is set to zero: The actuataoiscontributing any
torque to the movement, minimizing the interaction forcenen the operator and the
exoskeleton, as is shown by the torque curve of the exoskebating zero throughout
the whole movement. In the bottom row the support ratio iss£100, and the actuator
torque is following the estimated torque of the operatadjdating that the actuation
is able to produce the required torque during all phaseseofitbvement. In between
the top row and the bottom row, the support ratio is graduialtyeased, as can be
seen by the increased torque contributions of the exoskeleAs was desired, the
muscle activity is reduced as a reaction to the increasedostipThe operator was
benefitting from the support and did reduce his own muscleatins. But with
increasing support, the performed trajectories are ggttiavy, because the operator
is not used to the support from the exoskeleton and has td twdp

When comparing the knee angle trajectories of the correipgriagrams from the
two columns, it can be noticed that the quality of the periedmmovement is varying
greatly between the trial with the complete model, showrhaleft column, and the
trial without the muscle geometry, shown in the right colunuring trials without
the geometry model, the torque is overestimated as explairsection 7.1.1 when the
knee is extended before touching the marker. This leads éhavior that is not easy
to predict by the operator, let alone being taken into actannonsciously, resulting
in a very unsteady muscle activation. This in turn leads tarsteady support, and a
ragged knee joint trajectory.

The subjective feeling during the experiment was that tek tauld be easily per-
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Figure 7.9: Free movement with the actuated leg. The diagrams show e &mngle,
the torque contribution of the operator, and the torque sty the exoskeleton plot-
ted against time. The support ratio was increased from tdytiom. Left: task with
the complete calibrated model. Right: task with the muselengetry model excluded.
The muscle activity is reduced with increasing support ithtinals, but the task can-
not be performed smoothly without the geometry model, asbeaseen by the dents
in the knee angle trajectory in the right column. The torgstengation is poor, and the
behavior of the system is hard to predict for the human lodongystem.
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formed with the geometry model included. But with higherson ratios, a little more
mental effort was required to perform the movement smoothithout the model, the
mental effort was greater, and even when concentrating vary on performing the
task smoothly, this was not possible, especially with higbp®rt ratios. The actual
effect of the increased mental effort on the joint trajegteas not investigated in more
detail.

The results of this experiment justify the inclusion of a mbdhich takes into
account the geometry of the muscles to improve the EMG-toefprediction.

7.2.3 Sit-to-stand Movement

This experiment is performed similar to the every-day mosetmwhen getting up from
a chair, except that some additional constraints have bgglired to make the results
more comparable. This movement has been selected becaitsestévance to daily
activity, the possibility of the system to add a larger suppand because the system
behavior can be tested for a relatively simple movements lised to determine a
feasible lowpass frequency for the EMG signal postproogssvhich has a direct and
strong effect on the support computation and the resultgigbior of the actuation.

The movement was started from an upright sitting positiortti@g up was per-
formed without the arms holding on to anything, like arm se8oth feet were placed
side by side on the ground, so that the legs were parallehgdiie whole movement.
It was tried to put the same weight on both feet during eaah to minimize the effect
of different ground reaction forces on the experiments. bgement was performed
as naturally as possible (leaning forward, using the armbdtancing), and as similar
as possible, to reduce the effect of different postures enréquired muscle activa-
tions. It can also be performed with support from the armstest the feet can be
placed differently. But by applying some constraints, #ufts are more comparable.
The movement was performed a little slower than normal, atddoe expected from
elderly or disabled people being in need of support, becate limited velocity of
the actuator. The movement was performed with supportsati®.00, 0.25, 0.50,
0.75 and 1.00. The lowpass cut-off frequency for the EMGaigostprocessing was
set in the first series of trials to 1.6Hz, in the second seédek0Hz. Results of the
experiments are shown in figure 7.10. The first series oktisashown in the left col-
umn, the second series in the right column. The diagrams shewstimated torque
contribution of the operator based on the EMG signal evadoathe torque contribu-
tion of the exoskeleton, calculated through the actuatarefoand the resulting knee
joint trajectory.

During the trials shown in the top diagrams the support rag set to zero, indi-
cating that the exoskeleton did neither support nor hindemtovement. This can be
verified by the force curve being zero throughout the wholeeneent. The support
ratio has been increased in 0.25-steps between the traatstfie top to the bottom,
as can be verified by comparing the contribution of the eXeste to the estimated
contribution of the operator for the various trials.
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Figure 7.10: Sit-to-stand movement with support ratios of 0.00, 0.25000.75, and
1.00. The torque contribution of the operator and the eXesie, and the resulting
knee angle trajectory are shown. Left column: with a lowpagsoff frequency for
the EMG postprocessing of 1.6Hz. Right column: the same aitht-off frequency
of 4.0Hz. Muscle activation could be reduced with largermurp but oscillations can
be seen in the diagrams of the right column, indicating thebiperator overreacts and
feels uncomfortable.
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It can be seen that the shape of the knee angle trajectorsniasiover all trials,
indicating that the desired movement could be performedesstully, although with
differences in quality: The joint trajectories in the rigitlumn show obvious bumps
with increasing support. The movement has not been perfibrrasy smoothly. This
originates from the waviness of the EMG signals. After thedass filtering during
postprocessing, no other filters are applied to further shesothe signal. A typical
waviness of the postprocessed signal of the unaffected mewecan be seen in dia-
gram (2a) of figure 7.10. Since the support is directly dependn the prediction of
the operator’s contribution, the resulting support showdiagrams (2c)-(2e) is very
unsteady. The mechanical coupling of the exoskeleton vaghaperator leads to a
feedback of this unsteady support, which he tried to congtensnconsciously. Un-
fortunately this further increased the waviness of the ajoels contribution resulting
in an undesired oscillation. Those oscillations are solgthat the actuator cannot
always produce the required torques, as is most apparerggraan (2e).

This effect of the feedback can also be noticed in the firgesaf trials in the left
column: Atfirst the operator is activating his muscles vergrgly, out of long-learned
experience to a degree that is required if no external stppgiven. This leads to
a very steep inclination of the knee trajectory in the ihiphase of the movement
compared to the trajectory without support in diagram (2s)soon as the locomotor
system recognizes that the resulting movement is fastarekpected and desired, the
muscle activation is reduced to slow down the movement. Sihis directly results
in a decreased support which is not taken into account byaot@notor system, the
movement is slower than desired which is countered by aviatig increase of the
muscle activation. The resulting knee joint trajectoryvgb@ome small bumps as a
result of this untrained interaction between the human hadekoskeleton. It is best
seen in diagram (1c) and (1e). This interaction is performigllout conscious effort,
and cannot be simply suppressed. Additional training mdwyae this effect. But with
increased support from the exoskeleton, the operator cedldce the activation of his
muscles, thus benefitting from the support.

The subjective feeling during the first trial was very pagtiAlthough the feedback
system of the human body is very sensitive to the accelestidich lead to the bumps
in the knee joint trajectories which can be felt, but they dbcause a strong distrust
in the system because they are small enough. In fact alsouwtitihe support the
trajectories are not always very smooth because of theadictivpattern the operator
is using. But this results in a feedback as expected, notrggiasbad feeling. During
the second series however, the accelerations created bgténaction between the
operator and the exoskeleton have been so large and unedp#wt the trust in the
system was very low. It was very hard to not unintentionaltly gl the weight on the
unsupported leg to reduce the oscillations by reducing ¢lgelired muscle activity.
But the effect could not be omitted completely, leading towdr muscle activation
during the second series of trials.

Results of the experiment imply that cut-off frequenciasdothan 4.0Hz improve
the system behavior significantly. Of course a reductionhefftequency causes a
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higher latency of the system, which can be a disadvantagedoements that require
quicker responses. But for the experiments presented hecai-off frequency of
1.6Hz yields good results. It was experimentally determhjteit further research may
bring forward other values.

Stand-to-sit Movement

The stand-to-sit movement is investigated here, becauiseaiso a very common
movement and the interaction between the human and thensysteery important.
Results are presented in figure 7.11 for support ratios d, @5, 0.50, 0.75,
and 1.00. As for this and all following experiments, the lasp frequency is set to
1.6Hz. The resulting curves have similar artifacts like tieves presented for the
sit-to-stand movement: The estimated torque contributiotihe operator is reduced
with increased support from the exoskeleton. But the stibgeteeling is different:
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Figure 7.11: Stand-to-sit movement with support ratios of 0.00, 0.25000.75, and
1.00. The torque contribution of the operator and the eXesie, and the resulting
knee angle trajectory are shown. As expected, the musdietan is reduced with
increased support.

Although the movement itself is smooth, it is hard to redineerhuscle activation and
trust the exoskeleton to take over the remaining torque.stibgect seemed to perform
the movement much more carefully than the sit-to-stand mmewve.
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7.2 Torque Controlled Experiments

7.2.4 Stair Climbing

This experiment is performed similar to the daily activifyoimbing a stair without
using a handrail or similar support. This movement is verpamant because of its
relevance to the daily activities, and the cooperation@hiiman with the machine can
be analyzed in phases where higher support from the exdsketan be contributed,
as well as smaller forces have to be applied to allow positgpthe foot over the next
step. The experiment involved climbing four steps, with skipported leg initiating
the movement. The last step consisted of putting down thedbthe support leg
beside the other foot on the platform. Again, this experinieperformed slower than
normal, as could be expected from elderly or disabled psrsbime experiment shows
the advantages of the approach, allowing to initiate ang $te movement even with
the supported leg. No handrail for support has been used ke th& results more
comparable, but if desired, it could be used by the operatbe support curves and
knee joint trajectories from the experiments are shown urég.12.

The meaning of the knee angle trajectories is explainedi®unsupported move-
ment in the top row: At < 2.0s the subject is standing in front of the stair, both feet
side-by-side in a natural fashion. When the knee curvesstarall, the foot is raised
from the ground through flexion in the knee and hip joints.iBgithe following min-
imum att ~ 3.5s the foot is at its highest point and brought over the firgp stAt
t &~ 4.1s the foot is put onto the step, and the operator is leanirngafa to bring his
weight over the leading foot. The extensor muscles stadméract to push the subject
up the stair. During the following extension of the knee, theupported leg is raised
and put onto the second step {at 6.0s). The weight is moved over this foot and the
following knee flexion indicates that the third step is clibwith the supported leg,
in a similar fashion as the first step. The fourth step is peréml with the unsupported
leg, and the fifth step begins with a flexiort at 9.5s to raise the leg and to bring down
the foot onto the platform beside the other foot at 10.5s. Att > 11.8s the subject
is standing on the platform.

The strongest muscle activation is found during the pusiphases where the ex-
tensor muscles produce large forces. The flexor musclesayeagtive when the foot
is lifted from the ground through knee flexion and is broudia\ee the next step. No-
tice that for the knee flexion during the first step almost nrdit€force is required.
The flexion is a result of gravity acting on the shank whiletthigh is raised through
hip flexion. The other two flexions have to be performed abtitlerough the flexor
muscles while the thigh is not raised very much to avoid trigmver the next step.

From the top row to the bottom row the support ratio is inceeas steps of 0.25.
As can be seen clearly, the support the exoskeleton coteslbo the movement grad-
ually increases accordingly. For lower ratios this suppart be integrated into the
movement, and the muscle activity is reduced. Unfortugafelr support ratios of
0.75 and 1.00 this support cannot be utilized comfortabhe jbint angle trajectories
show many bumps, for example tat 3.0s and ~ 7.5s in the bottom diagram. Those
bumps are a result of small flexor and extensor activitieckvioan also be seen in
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Figure 7.12: Stair climbing experiment with support ratios of 0.00, 0.8%0, 0.75,
and 1.00 (top to bottom). The knee angle, and the torque dajpkeator and the exo-
skeleton are plotted against time. The operator’s cortichus decreased in response
to the support, but high support ratios result in dents irktiee joint trajectory.
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7.2 Torque Controlled Experiments

the other diagrams, but are amplified here. During thosegshdke supported leg
has no floor contact and small variations in the joint torgeesl to relatively large
accelerations. The same variations have less effect dphiages with floor contact.

During the trials with lower support ratios, the task of dhiimg the stair could be
performed easily and the operator felt safe. With highepsupratios the confidence
in the system was reduced and the support could not be im¢elgreo the movement
easily, although the muscle activity is slightly reducedut Br the cost of feeling
uneasy during this movement.

Small and short muscle activity seems to be hard to adaptapeously to external
influences, like the support of the exoskeleton. Amplifimabf those stereotyped pat-
terns results in undesired effects described above. Dpish-up phase, this support
could be integrated more easily into the movement, and theclawactivity could be
reduced. It seems as if the locomotor system is used to miayithe muscle activity
during push-up phase because of different loads a humaesaxery day. The phase
in which the leg is freely moved without external contacehaneeds to be adapted.

7.2.5 Walking

This task was chosen because of its relevance to the dailyitigst But it is hard

to verify or analyze the performance of the system with it.e Teason for this are
the small muscle forces that are required during walkingeelly from muscles
spanning the knee: During the swing-phase of the free lagexample, the knee
extension is mostly a result of the hip rotation and flexion.

The experiment was performed with support ratios of 0.025,00.50, 0.75, and
1.00. The resulting knee joint trajectories, and the cbation of the operator and
the exoskeleton are shown in figure 7.13. At the beginnindlafials, the subject is
standing upright. The movement is initiated and terminatétl the supported leg,
which can be seen by the smaller flexion at the beginning, atitkanding of every
trial. In between the repetitive pattern of walking is showbDuring phases where
the knee angle is close to zero, the leg is almost straightasdloor contact while
the unsupport leg is moved forward. At the end of this phdseankle performs the
forward propulsion closely followed by the steep decreds$beknee angle indicating
the beginning of the swing phase. The footis loosing growmdact, and the supported
leg is moved forward. After the free foot has passed the fatht ground contact, the
knee is extended again, leading to an increase of the knetegjogles. The foot is put
on the ground again, and the gait cycle is repeated.

Only during the knee flexion a larger negative torque is peeduvhich is support-
ed. Aside from that, muscle activity is very small, comparedfor example, stair
climbing, and the output of the torque estimation for eaclsctaiis almost zero.

Thus, the exoskeleton is following the movement of the legspely for most of
the time, not hindering the movement, although jitter ofab&uation of approximate-
ly =2Nm occurred. The subjective feeling during this task wag velaxed, although
the gait was affected for higher support ratios: It was reatithat the actuator produced
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Figure 7.13: Walking experiment for support ratios of 0.00, 0.25, 0.5(;50 and

1.00. The knee angle and contributions of the operator amehtbskeleton are plotted

against time. The recorded muscles produce very littlesfaering walking, but still,

minor activity affects the resulting knee trajectory foghér support ratios.
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7.3 Discussion

a torque to extend the leg, which felt a little unnatural. kigher support ratios, a con-
stant amount of extensor torque is amplified, which can bieedin the diagrams for
support ratios of 0.50 and over, resulting in a torque offéetpproximately 2Nm for
the support ratio of 1.00. This is a result of permanent sawlVity of the extensor
muscles during this movement. During calibration, an dffse all muscles in a re-
laxed state had already been determined and eliminateds lidtbe investigated if (1)
this increased activity actually produces a torque thatishbe amplified, (2) during
activities like walking, muscles are always a little activighout producing measurable
torque, or (3) it is a model error that needs to be corrected.

But it is known that, for example, during and after heel €tkhen the leading foot
touches the ground significant muscle force is required ¢p ke leg extended and to
be able to put weight onto the foot throughout the single sugghase. In those phases
muscles of the flexor and extensor groups are activated aathe time, increasing the
joint stiffness. In our algorithms, the opposing torquetheftwo muscle groups partly
cancel out, but stiffness is not increased.

7.2.6 Movement Combination

The last experiment is used to show that natural transiti@bseen individual move-
ments, which have been presented in the previous sectimnppasible. The experi-
ment was performed with a support ratio of 0.50. It beginhe subject sitting on
a chair. He (1) stands up, (2) walks three steps with each @)ptlimbs four steps of
a stair, (4) turns on the platform, (5) descends the staginvedks three steps back to
the chair, (7) turns, (8) and sits down. Again, this was pentd a little slower than
normal. Results of this experiment are shown in figure 7.1#ere& the numbers of
the individual movements are placed at each transition.

As can be seen, the transitions between the movements agpeathly, and sig-
nificant support is contributed during the movements thaire large muscle forces:
sit-to-stand, climbing the stairs up and down, and starsittmovements. In-between
the walking can be performed in a quite normal fashion, bathevit the exoskeleton
providing a significant amount of torque.

7.3 Discussion

In this chapter the implemented model has been justifiediir@nalysis during cal-
ibration, investigated regarding its torque predictionifmmetric muscle contractions
under different joint angles, and the application of the slddr computing the sup-
porting torque of the exoskeleton in experiments with thesé&eleton in common
movements.

It has been shown that the implemented properties of thedsbanical model al-
low a consistent torque prediction based on the EMG sigmalsstill, a certain error
remains. The torque controlled experiments showed thagittoe was small enough
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Figure 7.14: Combination of investigated movements. The movement wdernpeed
with support ratio of 0.50. Top: knee joint trajectory. Bwtt: contributions of the
operator and the exoskeleton. The markers indicate thenbiegi of the movement
and the transitions: (1) standing up, (2) walking, (3) stdmbing, (4) turning on the
platform, (5) climbing downstairs, (6) walking, (7) turigin(8) sitting down.

to allow the exoskeleton to add a significant support to theement. The system
behavior was so predictable by the untrained operator thabhld take the external
support into account and reduce his own muscle activatidnewerforming the de-
sired movement. During movements which require large jmmjues, a significant
amount of torque can be taken over by the exoskeleton, athtar high support ra-
tios, the interaction between the exoskeleton and the tgrdsacame problematic. In
these cases the wavy shape of muscle activation and thdimgsjoint trajectory is
an indication for the operator not feeling comfortable. Biperator could not benefit
completely from the large support and was overreactingedebadback.

The oscillations may be reduced if the latency of the systemhdcbe reduced while
still having a similar flat EMG activation envelope. Unfamately this is a contradic-
tion which cannot be solved easily.

The overreaction of the human to the support was performednstiously and
could not be immediately suppressed with increased coratent on the task. It
seems as if the lower levels of the locomotor system werealling those responses,
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7.3 Discussion

but additional training with the exoskeleton may produceearsuitable reactions to
higher support from the device.

The subjective impression of all experiments with signiitceorque contribution
and a smooth movement was that the motion felt quite natiwélthe actual amount
of support became especially evident after it was turnechofi the full required torque
had to be produced by the subject himself again. After perilog several stair climb-
ing experiments, the operator seemed not to notice the sugpygmore. But after the
support was turned off and the stair was climbed once mobe&dame obvious how
much the exoskeleton did in fact contribute.
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8 Miscellaneous Investigations on
Body Models

Besides the algorithms presented in chapter 4 and 5, otheritidims for control and
calibration of the exoskeleton have been investigated s&labgorithms are based on
systems of rigid bodies, which model the operator with thesérleton in the environ-
ment.

In this chapter two algorithms and results are summarizéi;iwhave been devel-
oped during the course of this project. They show differexthg of investigation that
have been followed, but have not been included in the fingkayss described in
chapter 4. The findings are of interest, since they illustg@neral problems concern-
ing the simulation and prediction of movement. Some of thmedlems could have
been minimized by developing a more complex exoskeletodweie or an external
measurement setup, which is beyond the scope of this work.

Section 8.1 describes an algorithm which predicts the eésimovement based on
simulation of a dynamic body model, and section 8.2 dessrébsimplified dynamic
body model tailored to a specific task: It is explicitly usedtidg calibration of the
knee extensor muscles with sit-to-stand movements.

8.1 Motion Prediction with a Dynamic Body Model

This approach was in fact the first approach to control thesleadeton, prior to the
torque control system.

The basic idea of the dynamic model approach is to simulaeb#havior of a
simplified dynamic rigid body model of the human body. The imosimulated for
a small timestep ahead through forward dynamics computatianterpreted as the
intended movement of the operator, and is executed withdtumsor. The movement
of the model is a result of muscle forces acting on differeartgof the model as well
as some selected external forces. The control system ie€ldgnamic equations to
simulate the body model and a position controller for theaictr.

This approach is well motivated by the fact that with dynaeguations at hand,
which describe the system behavior, modulation of the jtmmues to control pos-
tural stability as proposed in [KHO3a, KHO3b] could be ineggd easily. Thus, the
exoskeleton could not only be used to amplify the muscleg®f the operator, but
also to help maintain balance during dynamic movementsalm@ixperiments fusing
those algorithms have been presented in [FKRHO04a].
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8 Miscellaneous Investigations on Body Models

But it should be noted that this is more of a theoretical adersition in the context
of this work: To control postural stability it is necessaoyactuate more joints than
realized with the exoskeleton presented in this work.

The initial experiments for investigation of joint angleediction based on the EMG
signals have been performed on the hip joint, a revisedae@n the knee joint.

The following description is written with emphasize on theek joint experiments,
but short results for both experiments are presented. Thardic model approach as
presented here has been published in [FKRHO4b, FHO5].

The following section 8.1.1 describes the concept and tinéralosystem, and sec-
tion 8.1.2 explains the properties and implementation@iynamic body model used
for the movement prediction. Details of the calibrationtthige specific to this body
model are described in section 8.1.3, and section 8.1.4idles¢he sensor system that
is required in addition to the one presented in section 6&suRs from experiments
are presented in section 8.1.5, followed by a conclusioedticn 8.1.6.

8.1.1 Control System

The control system of the dynamic model approach is orgdnizéwo loops which
are connected: The first loop is responsible for computiegritended movement of
the operator with the dynamic body model. It reads the kirteniaformation of the
operator from the sensors, and computes the joint torquedl ohsupported joints
and the external contact forces through inverse dynamicth tbse torques and the
EMG signals the simulation of the dynamic body model is penfed through forward
dynamics computation. This yields the desired movemenh®foperator expressed
through the joint angles (in our cases: hip or knee anglext)ltave been computed
by the simulation. The simulated joint angle is passed tarther control loop, which
is responsible for executing the desired movement with dbteador. This concept is
shown in figure 8.1.

8.1.2 Dynamic Body Model

During the design of the dynamic body model, several imporégpects have to be
considered:

» The model should be as simple as possible to keep the nunilparameters
low. Most of the parameters are subject-specific and have tindntified by
hand.

» All sensors are mounted on the exoskeleton. The accurattyeagensor read-
ings, especially when measuring the current pose, may lyebaet, depending
on the pose and motion of the exoskeleton.
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Figure 8.1: The figure shows the data flow within the system. The solidslisteow
the flow in normal operation mode, the dotted lines mark &aliéd signals during
calibration.

* It may be possible that some parameters or state variahtesot be measured
directly. The number of those should be kept low, since extimeasurement or
calculation can introduce substantial errors.

The human body model of the simulation is simplified signifita It consists of
two legs with feet, shanks, thighs, and the torso. The armdshaad have not been
modelled. All limbs and the torso are modelled as rigid bsei@éh a mass distribution
of rectangular parallelepipeds. The limbs are connecteld swivel joints that can
rotate in sagittal plane only. Joint friction is not moddlle

Of course this simplified model is not useful for real-lifalsility computations,
because it is planar, but the reduction of degrees of fredusps during first investi-
gations of the approach.

Body masses of the torso, thighs, shanks and feet are daldw@a fixed fractions of
the total body weight of the subject. Body dimensions arerdkom our subject. All
parameters are listed in appendix C.

The dynamic equations of the model were derived using Kdnasalism [KLOO]
[KL97]

M(@u = f(q,u)+g(a)T (8.1)
with q = (q}r'lip7qlr<neeqgnkleaq|r1ip7aneeqlanklevqlorsoﬁq);()elviqu)p/)elvig-r7
u = q (time derivative in the Newtonian reference frame)

where
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g: vector of generalized coordinates, which are the jointemgf the hip, knee,
ankle, and torso (with respect to the reference frame), aoddinates of the
pelvis located in the reference coordinate system,

* u: vector of generalized velocities,
* M (matrix function): specifies mass distribution of the rigioldies,
« f (vector function): models inertial forces and gravity agton the system,

» T (vector): takes into account all torques in the joints assalteof the muscle
forces appliedtf; , i ce thnkie thip: thnee thnkie together with the external forces
Fi. Fy, Ft, Fj applied to the left and right ankles i~ andy—direction, K,

applied to the hip, and the torques applied between theamderframe and the

feetT!, T (refer to figure 8.2),

* g(q): nonlinear function representing the current system candiipn and ge-
ometry.

The set of dynamic equations (8.1) were generated with thelic manipulation
tool AUTOLEV?, resulting in a system of nine equations. Those equatiopsess
the relation between the control values, which are the #scand forces acting on
the system, and the resulting movement, which are the aatieles. If the current
kinematic state of the system and all forces and torquesgaoti the system are known
at any time, solving those equations foyields the resulting accelerations (forward
dynamics). Double integration of those accelerations kites the movement of all
rigid bodies of the system over time from a known initial stat

On the other hand, if the acceleratianare known, the equations can be solved for
the torques and forces which have caused these acceler@fisarse dynamics).

As stated above, the general idea of the control system isnalate the dynamic
model for a small timestep. The result of the simulation teripreted as the desired
movement. To be able to perform the forward dynamics contiouttaall joint torques
and external forces acting on the modelled rigid bodies hav®e known. External
forces could be measured by force sensors between the apanakthe environment,
and between the orthosis and the environment. But for the forques this is not
possible with non-invasive methods. A different technitas to be applied: For all
joints that are not covered by the exoskeleton, and theirchassiot being observed
with EMG sensors (in our case: all except the knee), the joiriue during the last
iteration can be computed by the inverse dynamics of the madimg the kinematic
information recorded with the reference system. The irvelggmamics computation
requires the movements of the joints and of the referena# pgaring the last iteration
which can be determined through angle and floor contact senaod calculates the

1Kane Dynamics, Inc., http://www.autolev.com, 2007.
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Figure 8.2: Left: coordinate systems of the reference system and theidio@l body
segments. The-axes are perpendicular to the paper plane pointing towwhedeader.
They-axes are perpendicular to theand z-axes forming a right-handed coordinate
system. The generalized coordinates rotate around thesopftke individual systems.
Right: all joint torques and the modelled external forcethwheir points of contact.

torques and forces that must have been active to producet¢beded movement: It
solves equations 8.1 for elementsTof

Those torques and external forces that have been activegdine last iteration are
assumed to be constant for the following timestep. This isugih approximation,
but we have to keep in mind that the movements which are peddrwith the or-
thosis do not contain large accelerations. For the examphkements presented in
figures 8.5, 8.6 and 8.7 this approximation introduces au@ggror in the order of 1%
to 3%.

Inverse Dynamics  During the inverse dynamics computation, equations 8.1 are
solved for elements &F. ButT is constructed of more than nine elements, as described
before, because of different external reaction forcesdhatcontribute: contact forces
and torques on one or both feet. The elementk fwfr which equations 8.1 are solved,

in addition to the six joint torques, depend on the curremntact information with the
floor:

- only left foot: Fy, K} andT',
« only right foot: Fy, Fy andT",

« both feet:F),Fj andF
(R is symmetric for both legs and avoids singularities when &e close to-
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gether; compensates measurement errors, and is only usedbde to solve the
system of equations algorithmically).

The accelerationg needed to perform the inverse dynamic computation are numer
ically derived from the values of the pose sensors With- 30ms After this compu-
tation, the contributions of the mentioned torques ande®tbat result in the current
motion are known.

EMG-to-Force  Computing the torque is not possible for the knee joint cegdry
the orthosis by inverse dynamics: This joint cannot be mavgdout the actuator
being moved, and as a consequence the inverse dynamic aioputould never
predict any movement of this particular knee joint as a teguhe operator’s intention.
It would always predict the effect of the actuation, whicimad desired here.

To avoid this, EMG signals of muscles spanning the knee gniatrecorded, con-
verted into muscle forces, and subsequently summed in tee tarque. The torque
of the actuated knee joirtf, ., is calculated by converting the EMG values to activa-
tions as written in equation 4.2. The resulting muscle fof¢® is derived much more
simple for these experiments by:

m ENURT
N1
withi =1...N (N: number of recorded muscles),the post-processed and scaled

EMG value of muscle, andA; the non-linear shape factof; was limited to—10 <

Aj < 0 in our setup. The scal®;, is the maximum recorded post-processed EMG

signal during calibration with the corresponding maximwnrcé,F.

Two muscles have been included into the model, one extensiasrze flexor for the
knee joint. The points of origi®;, and insertiorl; of the muscles are fixed and have
been chosen by hand in analogy to human anatomy (refer tomdpp€). This muscle
model is not as elaborated as the one described in sectioNd Baypoints have been
used in this model, and no other muscle properties.

The total knee joint torqug,,..is calculated as a sum of all force contributions of
the muscles spanning the knee joint with

N -
oo li — G

thnee= i —J) x ——= F"], 8.3

knee i;<<l ) i — Gl |> (8.3)

whereJ'is the vector to the knee joint ar® andl; the points of origin and insertion
of musclei in the reference frame.

F R (8.2)

Forward Dynamics  Now all the joint torques and external forces are known and
the simulation can be performed: Tloeward dynamicélock takes the current system
stateS(t) = (q(t),u(t))" and applies all internal and external torques and forces as
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8.1 Motion Prediction with a Dynamic Body Model

calculated by the inverse dynamics and the joint torqudtiegdrom the EMG signal
evaluation. It then solves equation 8.1 tgrand double-integrates the accelerations to
compute the new system state.

8.1.3 Calibration

In this simplified human body model, only the paramet&r& andF," (from equa-
tion 8.2) have to be calibrated for all muscles.

Extensor Calibration Flexor Calibration
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Figure 8.3: Example of the calibration with the inverse dynamic modeltfe thigh
muscles (stair climbing experiment). The calibrated exdemuscle is a representative
for the extensor group, resulting in a high maximum forcepatiassociated with the
muscle. The same is true for the flexor calibration, althotighcalibration is not
sufficient here: The sum of the flexor forces far exceeds themman force calibrated
here.

In the setup here, a movement with the joint that should biéreaéd without ex-
ternal contact had to be performed. That is, hip extensi@hfeaxion during early
experiments, and knee flexion and extension together witibahg one step of a stair
during later experiments. During the calibration, the atdtwas not attached, allow-
ing free movement in all joints.

The data was recorded and stored in tables for every muscteding to its acti-
vation as described in section 5.3. Two different optimaaglgorithms have been
tested: The first algorithm used a black-box method for thdybmodel, the second
performs curve-fitting with the inverse model.
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8 Miscellaneous Investigations on Body Models

With the black-box method, every entry of the table cont#eslast recorded kine-
matic configuration and the resulting configuration one tstep later, together with
the EMG values. This method was applied to the hip joint, dredgelvis was held
fixed in the reference frame. All other joint torques haverbset to zero for simplici-
ty. During hip flexion and extension the muscles spannindtiee were all relaxed.

The error function of the black-box optimization algoritisimulates the model for
every table and every entry with the current parameter setisting ofA;, R, andF",
and evaluates the predicted joint angle in comparison tadberded resulting jéint
angle. The squared error is summed over all entries andiaijo

2
Eplack=) > <qm‘°del— CI.re,f> ; (8.4)
T

wherej is the entry index of the tablef"°®®'is the joint angle simulated by the model

based on configuration stored in entryfor the i-th joint, andqirvejf is the resulting
reference angle of the same entry.

Optimization was performed repeatedly for all muscles taat for coactivation
and cocontraction.

For this black-box method, no inverse model is required s Tlain be beneficial, if
more muscles are incorporated and model complexity risesit Becomes problemat-
ic with redundant muscle activations. But since the moveameuring this calibration
are not limited to isometric exercises, other movements wiiber activation patterns
can be included. The optimization has been performed wélNgslder-Mead Simplex
Algorithm described in [NM65].

Unfortunately, this optimization is rather time-consumimecause of the required
model simulation. The second method calculates the ilnvdirsamics and stores the
computed knee torqug'r. in the table entries, together with the EMG values.

The optimization of a particular muscle takes the EMG-t@édunction from equa-
tion 8.2 and evaluates the result with the stored knee tafgue

i 2
R rinv r.emg
Einv = z (tkneej _tkneej) ) (8.5)
J

wherej is the entry index of the muscle tabt ig‘g]— the result of the inverse dynamics

computation stored in entry, andtlife”;? the torque resulting from the EMG values
stored in entryj applied to the EMG-to-force function described in equaBdh

Aside from the reduced complexity of the optimization, batgorithms deliver
equally good results. Advantages of the concept of caldmatith data tables is
described for the multi-muscle calibration of the torquepaontrol system in sec-
tion 5.8. Experiments described in section 8.1.5 have beéonned with the opti-
mization utilizing the inverse model. An example caliboatis shown in figure 8.3.
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8.1 Motion Prediction with a Dynamic Body Model

8.1.4 Sensor Setup

In addition to the EMG and angle sensors described in se6tint is also necessary
to record the joint angle configuration of the unactuatedaled the torso inclination
of the operator. Ideally, also the arms and the head shoutddasured, but this is too
complicated due to the high degree of freedom. The senstemeys the unactuated

Figure 8.4: Early stage of the actuated orthosis (foreground). The tagebused to
hold the sensors for measuring the joint angle informatiomfthe unactuated leg is
shown in the background. Squares indicate the positioneotitelerometers, circles
mark Hall sensors, and dashed circles show the locatioredfdbr contact sensors.

leg is attached to a second, very light-weight frame. Thghswn in the background
of figure 8.4. The torso inclination is measured by a sengacla¢d to a belly plate,
which is not shown in this image.

During those early experiments, two EMG sensors have besreglon top of the
sartorius and gluteus maximus (for the hip experiments) fao on the semimembra-
nosus and vastus medialis (for the knee experiments). M#rgr smuscles cooperate
during hip and knee movements, but we have chosen thosehaheanost clear and
simple to record and have a large contribution to the resyinint torques [Pla03].
The EMG sensors are the same as described in section 6.4eaddtthis rectified and
smoothed by a lowpass filter with a cut-off frequency of 5 Hgaggested for example
in [TVdZ03, BLMBO4].

Ankle and knee angles are measured in sagittal plane onlptbhnidgs with Philips
KMZz41 Hall sensors (refer to section 6.4), and the orientaf thigh and trunk
is measured with accelerometers ADXL210 from AnalogDevite., as described
in [FKRHO4b]. This is necessary, since no fixed axis of rotatxists to which the
Hall sensor or magnet could be attached. Alternativelyjajoeter$ could be used.
The joint angles of the left and right hip are calculated asdlfference of the an-
gles reported from the accelerometers of the torso and thiigh, and the torso and

2For example, from BioVision, http://www.biovision.eu,@D
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8 Miscellaneous Investigations on Body Models

right thigh, respectively. The accelerometers have beacepl as close as possible
to the rotation axes of the hip to reduce the inertial aceéil@n resulting from limb
movement.

In addition to that, force sensing resistors (FSR sensoesatéached under the heel
and footpad on both feet to detect floor contact. All sens@sampled with 1kHz.

Since no sliding on the floor and no ballistic flight phase issidered, it is sufficient
to record all joint angles for determination of the curreimieknatic state of the opera-
tor. The position of the reference point in the pelvis is catep through the contact
points with the floor and evaluation of the joint angles witik torresponding lengths
of the body segments. The angular velocities are computatulnyerical derivation
of the joint angles. This could be improved by integratintgpegy and acceleration
sensors on every body segment with additional filters to tamirconsistency across
all sensors.

8.1.5 Experiments

The experiments presented here are divided into two graupsfirst group deals with
simulating the hip joint movement during free leg movemetiits second group with
climbing a step.

The first experiments have been performed as follows: Thgesuis standing up-
right, but only on the left foot. The right leg is free to movesagittal plane, and the
actuator is not attached. The shank should point roughlyndovthe ground. Calibra-
tion is performed offline on a set of recorded data: The lefé ©f figure 8.5 shows
a replay of the data used for the calibration. The right sidin® same figure shows
the prediction of an arbitrary movement pattern with the s@sture. Both diagrams
show the reference hip angle and the predicted hip angleedlagainst time. During
this experiment, the model was synchronized with the refsgesystem only at the be-
ginning. After that the knee angle is computed based on ttee$qpredicted from the
EMG signals. As can be seen, the model can adapt the parangeiiéz well during
calibration. Unfortunately the calibrated EMG-to-forem€tion has a strong curvature
(A~ —3.5), thus omitting a force production that is required to reangles above
70° as shown during the prediction on the right side.

One could argue that this experiment is an exercise in ciitieg only, but it should
not be forgotton that the data is a result of the simulatioarotuinderlying dynamic
model. On the other hand it is true that the model featuregddrpredictability be-
cause of the low number of integrated muscles, and the alistigfrom muscle and
tissue properties.

The second group of experiments which is presented hergjisrugch optimized on
the task of climbing one step of a stair for several reasoinst &f all, climbing a stair
is a prominent example where large force support in the koie¢ gan be applied for
good, in contrast to normal walking where the thigh musctesaly activated during
certain short phases, and additional support is not senfbhealthy subjects. Sec-
ond, it omits some problems which complicate the experismannecessarily: When
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Figure 8.5: Results from early experiments: The subject was standirggniapright
position. The recorded reference hip angle is plotted tegawith the hip angle pre-
diction of the model based on the EMG signals (no actuatideo degrees indicate a
hip in neutral position, pointing down. A positive angle medip flexion (raising of
the knee, torso remains upright). Calibration had beeropadd with the data on the
left side. The right side shows the prediction for previgustknown data.

considering the sit-to-stand movement, for example, auldit contact forces have to
be detected at other locations. And since both feet ared®bsi side during standing
up, the ground reaction forces for the individual feet carb®estimated by a planar
model in sagittal plane.

This experiment consists of two movements: During the fire the subject is
standing upright and flexes and extends his knee and higsjdintthe second move-
ment the subject is climbing one step of a stair, with thetrigh leading. During
the movements the actuator was detached to allow unhindeos&édn. The kinematic
information as well as the EMG signals are recorded. Datatf parts are utilized to
calibrate the flexor and extensor muscles (as shown in fig@je 8

This simple experiment tests the most important aspectiseofilgorithm: motion
of all limbs, various points of contact during single- andide-support phase, swing-
phase of the right leg, cocontraction of knee flexor and esdemuscles and coactiva-
tion with other muscles that are not recorded.

The calibration of the muscle parameters is divided intedtparts: The first part is
performed after the backward motion with the knee flexoesstttond part after climb-
ing the step, and the third part performs the calibrationrafya both muscles without
the need to acquire new data. Figure 8.6 shows a replay oftiaeided for calibration
to show the model adaptation. Applying the EMG signals tdaiba@y model results in
a torque-curve very similar in shape and magnitude to thguscurve calculated by
the inverse dynamics as described in section 8.1.2. Thetaidfghe torque curves is
partly a result of measurement errors, and not modelingalssipe forces of the mus-
cles and tissue: When the muscles of the free leg in an upstghtling position are
relaxed, the knee of the human is not completely extendemhnirast to the modelled
knee, due to passive forces of the muscles. This leads toqanaardisplacement re-
sulting in a different knee torque. In addition to the veatidisplacement, a horizontal
displacement exists as a result of the delays through theencah derivation of the

121



8 Miscellaneous Investigations on Body Models

Calculated Knee Torques During Free Motion
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Figure 8.6: This diagram shows the knee torque as calculated througrsevdy-
namics compared to the torque resulting from the EMG sigvelLation (after having
calibrated the EMG-to-force parameters of the knee flexArhegative torque indi-
cates knee flexor activity. The vertical offset is a resudtirthe unmodeled passive
muscle force and errors in the angular measurements ofigfiednd shank.

joint velocities and joint accelerations. This can be conga¢ed for an offline replay,
but not for an online experiment.

Since the body model will be synchronized with the referesystem during every
iteration, it is sufficient to display the torque plot of thetwated joint to analyse the
short-term behavior of the system. The overall fitting of jihi@t angletrajectory is
not so important, since the human is inside the control lamh @an compensate a
divergence from the desired trajectory.

Step two is performed after stepping up the stair, as shoviigume 8.7. The data
begins when the right foot is lifted from the ground. A litflexor activity with co-
contraction indicates the interval where the knee is bermaite the right foot. The
section between the dashed lines indicates the double dygEse, during which the
weight is shifted forward from the left to the right foot. &ftthe dashed lines, the left
foot is raised and also put on the same step.

As can be seen in the lower part of the figure, both muscle grawng active dur-
ing this motion resulting in the calibration of the knee exdar parameters using the
parameters of the knee flexor.

In the third and final step, parameters of both muscles hage bptimized repeat-
edly without the need to acquire new data. This was necessacg results modify
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Calculated Knee Torques During Stair Climbing
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Figure 8.7: Top: torque prediction with a dynamic body model duringrstimbing.
The torque computed by the inverse dynamics is plotted awver, together with the
torque derived from the EMG signals. The dotted lines magkdibuble support phase,
in which deficits of the model can be seen. Middle: PostpraegEMG activity of
the observed muscles. Bottom: Visualization of the refegesensor information.
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each other due to cocontraction. This procedure was tetednahen the change in
parameters was sufficiently small.

The upper part of figure 8.7 shows the torque curves during gdinbing after
the calibration was completed (a replay of the recorded) daal figure 8.3 shows the
final calibration curves for both muscles. When examinirggéhcurves, the high force
output of the knee extensor muscle attracts attention.tBimauld be considered, that
the vastus medialis recorded during this experiment reptssa whole muscle group
with a sum of peak forces of over 5000N [DL190]. But climbing one step of a stair
requires not maximum muscle force. Thus it can be said tleadittier of magnitude is
correct. This is different for the knee flexor muscle thab abpresents a muscle group
with a sum of peak forces over 2000N. For that, it should bechahat the movement
chosen for the calibration is nowhere near the maximum ftineeknee flexor can
produce. But this does not explain the strong curvature efftimction, prohibiting
the production of large forces during extrapolation forf@gmuscle activations. This
could be a result of inaccurate modeling, or a result of theatignment of the EMG
signal and the torque computed by the inverse dynamicsditces the predictability
of the model across different movements, but neverthelksgsaa good prediction for
the setup it was calibrated for (task-dependent).

Examining the upper part of figure 8.7 more closely reveasibst important prob-
lem of the control system: The measurement of the operdtmesnatic configuration
is inaccurate, so that when the floor contact configuratiah#nged (the left foot is
raised from the ground), a large discontinuity in the torgrexiction at ~ 4.62s can
be observed. In-between the dashed lines, the operatoreamamy forward to bring
his mass forward over the leading foot. Unfortunately, tired angle was determined
not accurately enough (amplified by the unmodeled arms aad)te reflect this in
the data. Instead, the data suggests that the center of mgstmman is behind the
supporting foot, leading to an abrupt increase of the coetpkihee torque at the tran-
sition to the single support phase. Such a large knee tosquessible, because during
this phase the foot with floor contact is rigidly connectethfloor in the model, cre-
ating a large supporting ankle torque to establish consigtevith inaccurate sensor
readings.

In theory, if the motion is completely tracked with head, aramd upper torso (or
the torso has to be stiff), and if the pose sensors are aecemaugh, an abrupt change
should not occur. Unfortunately this is not the case with@yerimental setup. In-
fluence of unmeasured and unmodeled body parts, unmodeigdedeof freedom,
motion artifacts due to inertial accelerations, and erfirocslibration of the accelerom-
eters attached to the torso and thighs result in inaccungfie aeadings. Especially for
the heavy torso this leads to wrong torque calculationserjamts for some configu-
rations.

Before and after the double support phase, a good cornelafithe two torque-
curves can be seen expressing the performance of the bodsl snad the consistent
calibration for both muscles in those configurations.
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8.1 Motion Prediction with a Dynamic Body Model

8.1.6 Results

Figures 8.5, 8.6, and 8.7 show results of the model adaptatid intended motion
prediction. The shape of the curves correlate very welhoalh sometimes the am-
plitudes of the curves differ. This is not a major problemttoe desired application:
Since the subject wearing the orthosis is inside the cotdop of the system, he or
she can increase or decrease the muscle activity a littleaptdo the circumstances.

The major problem of this approach occurs during the doulgipart phase and at
the transitions between contact configurations: The tarqoenputed by the inverse
dynamics cannot be computed reliably and continuouslydiRgethose torques into
the simulation of the body model may result in an unexpe@ggkt joint angle, which
is not desired. Without a solution to this problem, expenisecannot be performed
safely. In order to solve those problems, the system and hoadesither be simplified,
hoping to get a more robust and reliable system, or made noonglex, addressing
all drawbacks directly. Similar problems have been ingegéd during the KONDISK
research project: In [SB98] the theory of a state-basedalbertis proposed that han-
dles hybrid discrete-continuous dynamic systems. It wasieghto the simulation of
a multi-fingered robotic hand during grasping and regraspasks, and later investi-
gated and extended in experiments with a robotic hand [BSBfijblems of contact
state errors due to inconsistencies between the model ance#h world have been
addressed in [Sch03]. Applying such a control system to xsleleton can improve
the system behavior.

For most of the deficits or simplifications that have been inaetl above an appro-
priate solution or replacement may be found that improvegésults. For example,
the complex biomechanical model described in section ©3eaapplied, the model
can be three dimensional, more EMG sensors can be evalaaggbint friction and
passive elements can be included. But this does not solvatikesnt problem of this
approach which is the sensibility of the inverse dynamiesmotation to disturbances,
and inaccuracies in the sensor readings and modeling. Sbthese problems could
be reduced by increasing the complexity of the sensor sydRanording the angular
velocities and acceleration directly can reduce someaat®f In addition, the upper
torso, arms and head could be equipped with sensors to impnevconsistency be-
tween the model and the real world. But most importantly,gieind reaction forces
have to be determined properly, and the pose in the globatelete system has to
be determined accurately due to the effect of gravity. Evéh an array of 64 FSR
sensors from Medilogitthe acquired data was not sufficiently accurate. Besides, ex
tending the system with, in theory, redundant sensor inftion adds the problem of
consistency across different sensors, and an appropaabgation has to be imple-
mented.

Some of those problems disappear if the exoskeleton is @ésteto a full-body suit.

3T&T medilogic Medizintechnik GmbH (Germany), http://wwwedilogic.com/, 2007.
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In that case, the joint angles could more accurately be mdted, and more limbs can
be integrated into the model.

On the other hand, the system and dynamic model can be siedpliélying on less
sensors, and performing some estimations. Such approahpesented in chapter 2,
where the RoboKnee [PKMCO04] is one example of them: Grouadtien forces un-
der the feet are measured, and the knee torque that is ngcessaintain a statically
stable pose is computed through a very simple model. A cepaicentage of this
torque is added by the actuator. The drawback of this appr@athat it does not
regulate the support depending on the task, and it doesistgril in any way to the
operator for his or her desired movement.

For the BLEEX mentioned in chapter 2 a more complex model veagldped that
computes the support torques required to relieve the apeshithe weight and inertia
of the exoskeleton and payload. But the sensitivity of thelehto the payload led to a
control algorithm using a position controller and a modeddzhtorque compensation,
depending on the phase of gait, as published in [KSHO6].

As a conclusion to the experiments presented in this chaptan be said that the
theoretical model is too complex for application in thistgardar exoskeleton. If the
dynamic body model is applied properly it would offer somgattages: The desired
movement can be computed in advance and can be modified aggtocconstraints
defining stable movements, or can be inhibited completelysédety reasons. But
those features begin to make sense only with a more compteskeleton hardware,
in terms of more actuated degrees of freedom. Furthermioeefaivorable behavior
of the torque controlled system presented in section 4.6atape integrated: The
robustness to external contact forces wherever they ajgpeant be achieved, and it
is not possible to override the predicted "desired" motiopase through additional
forces from unmeasured muscles, or, for example, the hapihggo move the leg.
The system always sticks to its simulated results.

For the exoskeleton hardware presented here, a more simglesbable approach
was sought and found. This approach has been presentedpitecha

8.2 Knee Torque Prediction with a Simplified
Body Model for Calibration

This section discusses the application of simplified bodget®to be used for specific
tasks. To analyze the behavior of such systems, the spesialaf a system modeling
the sit-to-stand movement is developed and analyzed. #ysiem proves to be useful,
new models can be developed for the exoskeleton control.

During the calibration movement described in chapter Sited out, that not all ex-
tensor muscles are equally active during isometric exescs all knee angles, name-
ly the vastus medialis and vastus lateralis. Those musoéeadivated during tasks
where larger muscle forces are required, for example, dwtanding up from a chair
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or during knee bends. The simplified model here producesemte values for the
calibration of the EMG-to-force parameters. By analyzing model behavior in this
context, it can be evaluated in how far this model shows sbeiscy with the real
world.

A simplified version of the body model described in sectioh ®as developed,
tailored to the task of standing up from a chair. This modelsed to calculate the
knee torque to obtain the reference torques for the optiiizarocess.

Recording of the data is started after losing contact wigtctinair, and stopped when
standing in an upright position. No transitions betweentacinconfigurations has to
be considered. The body model is simplified in such a way itiket éxtra sensors are
required. The algorithm has been published in [FHO7].

8.2.1 Model Simplifications

To estimate the knee torque the muscles are producing dgeittimg up from a chair
without hindering the movement, it is necessary to tracknioement and compute
the torque by inverse dynamics. The advantage of using arratimple movement is
the possibility to apply major simplifications to the modalithout those, the problem
cannot be solved satisfyingly in a real world environmerdrdy with many additional
sensors.

For the sit-to-stand movement the body model uses the folgpgimplifications:

» Both legs are merged into one, and a two-dimensional mededed.

* After losing contact with the chair, the operator is nobaid to support himself
with his arms to omit unmeasured and unpredictable extéonze input.

* Only the trunk, thigh, and shank are modelled (as rectaj)gl&€he arms and
head are approximated through modifications of the trunkgmges. Excessive
movements with the arms have to be avoided.

» The ankle is rigidly attached to the floor, the foot is not relbed.

« Joint friction and passive joint stiffness is neglectegpigally 2-5Nm/rad for
most major joints in the mid-range of motion [ZW90]).

« Joint accelerations are small and can be neglected, edlgdi@cause the phase
when losing contact with the chair is not regarded due toti@adorces from
the seat.

+ Joint velocities, typically below 50/s, during the coresield movements con-
tribute only about 1% to 3% of the knee joint torque, and aggetted.

Following the model description from above, the parametéthe model are:
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* The total body mass of the humamy (must be measured from the subject),

» Masses of the body segments as a fractiamgf; for the trunk, thigh and shank
taking into account the combination of limbs as describexlab

* Length and width of the trunk, thigh and sharik;, W,), (Lt,W), (Ls,Ws) must
be measured from the subject.

» The location of the center of mass as a fraction of the lenftihe body seg-
ment from the proximal end for each body segmenfthigh) andrs (shank),
taken from literature [Win90a]. The mass center of the trunks determined
separately later on. It also incorporates the arms and head.

» The location of the balance point of the fodit; = 0.04m from the ankle joint
towards the distal end of the foot (see remarks below).

The individual values used in the experiment are given ireagpx C. The model
includes three joints: ankle, knee, and hip, with corresiimngeneralized coordinates
g1, Oz, andqs, which are defined as shown in figure 8.8. The third angle can be
computed as a result of the other two angles by introducingdalitional constraint:
The center of mass (CoM) of the body projected onto the gronmst be on a specific
point within the region of the foot, the balance pobit= (bX,O)T. The ankle angle
is measured in addition to the knee angle, because a sensdreceasily attached.
By computing the hip angle as described below, it can alsegnate effects of the
unmodeled head and arms.

The x-coordinate of the center of mass of the model can be gtedby:

CoMk = (Lurumycog(gs+ G2+ 0a) + Ls(m + my+ms(1+rs)) cogqs)
+Le(Mu+m(141)) cog(ar +G2)) - (Me+m+my) (8.6)

The angle of the hip is calculated by solving equation 8.&ytor

—Q1— 0 if C>+1
3= MT— 01— 02 if C<-1 (8.7)
arccosC)—q1— otherwise
with
A
=8

A = byMota — Ls(M+my+ms(1+rs)) coso)
—Le(my+m(1+r¢))cogar+0p)
B = Lurumj
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and

by = CoMk (balance condition) (8.8)
Miotal = Ms+ M + My (total body mass)

If C > +1 orC < —1 the balance condition is violate@oM # by, and the arc cosine
of C cannot be computed. To allow calculation of an approximétedangle,C is
replaced by the boundary it has exceeded.

8.2.2 Human Body Model

The equations with the simplifications justified above (j@ncelerations and veloc-
ities are neglectedu; = U, = U3z = U1 = Up = uz = 0) have been computed with the
tool AUTOLEYV, yielding:

0 = —Ta—Lsms(1+rs)gcogar) — mg(Lscogas) + Le(14rt) cogqr +a2))
—myg(Lscogqs) + Lt cogqr +02) + Lurucos(ar + 0z +03)) (8.9)
0 = —Ti—Lim(1+rt)gcosdr+0dz) — myg(Lt cogar + )
+Lurycogdy +d2+0s)) (8.10)
0 = —Th—Lurumugcosas+0qz+0s) (8.11)

The knee torquéy can be easily obtained by rearranging equation 8.10:

T = —g(Lem(1+r¢)cog(oy+ 02) +my(Ls cogar +02)
+Lyrycoggr +02+03))) (8.12)

Assuming that-1 < C < +1 and substitutingz in equation 8.12 with the expres-
sion from equation 8.7 yields:

Tk = —o(Lem(1+r¢)cogar+ 02) + myLecogar + 02) + bxMigtal
—Ls(Motal(1+rs)) cogqr) — Le(my+ my(1+r¢)) cogqr + ) (8.13)

Interestingly, the knee torque is not dependingr@or g3, meaning that there is no
need to measure the torso angle or any upper limbs. But tiplkasproper knowledge
of the balance point. Ifj3 should be computed, the mass center of the trupk,
must be chosen in such a way that the balance condition fraratesq 8.8 is fulfilled
throughout the sit-to-stand movement. Argumérfrom equation 8.7 only exceeds
the upper boundary-1 when the CoM cannot be brought over the balance point due
to the knee and ankle configuration. The lower bounddatys never under-run during
correct measurements.

Evaluating equation 8.7 fay, in one important extreme configuration of the move-
ment yields the required relative position of the mass ceaftthe trunk. The extreme

129



8 Miscellaneous Investigations on Body Models

configuration is taken from the initial phase when losingtaotwith the chair: The
body is bent maximally forward to bring the center of massaghover the knee joint
(over the balance point). Solving equation 8.6rgyields:

ri = —[Ls(m+my+ms(1+rs))cogqr)+ Le(my+m(1+r¢))cogor+ap)
—by (Mg +my +my)][Lumycog 0y + G+ Gs)] "t +ra (8.14)

To take into account that the body is maximally bent forwdjgs set to an extreme,
resulting in a horizontal trunk configuration:

G3=—01—0p (8.15)

The contributiorr, ~ 0.2 moves the mass center a little towards the head to be on
the safe side for repeated measurements. It has to be paiatethatr, by, andqgs
are directly related: Modifying one of those quantitiesutessin a change of at least
one of the other two.

Unfortunately, thex-coordinate of the balance poitt, which is considered to be
a parameter, appears in equation 8.13 multiplied by thé body massmnqa. As a
consequence, variation of the balance point has signifinlnence on the computed
knee torque.

8.2.3 Experiments

Prior to the calibration with the sit-to-stand movemenayfof the six muscles used for
the torque loop approach had been calibrated as descrilmb@dypter 5: all, except the
vastus medialis and vastus lateralis. After that, anothldsration step was performed,
with a sit-to-stand movement as described in section 8.2ZHe reference torques
have been computed from the inverse dynamics of the singhioely model, and the
parameters of the last two muscle have been optimized.

Figure 8.9 shows the results of a calibration: tA¢ 1.6s the movement was rec-
ognized due to a sufficient change in the knee angle. Faxlt < 4s the prediction
correlates with the reference very well. Ror 4s a discrepancy can be seen: The
predicted torque is smaller than the torque based on thesewlynamics. Due to the
balancing condition the thigh and trunk is not upright, Ihe knee and hip are slight-
ly flexed. This results in a residual torque which is not pné¢s$e the human. This
could be omitted, if the balance point would be allowed to eowu a trajectory, and
if this trajectory was known. Unfortunately it is not, whidecreases the performance
of the model: Since all sit-to-stand movements are perfdrsiightly different, the
true balance point is deviating from the point of the modetieg to an error in the
estimation. This can be observed if the calibrated parammate applied to data from
a different trial: The torques computed from the inverseangits and derived from
the EMG signal show a considerable error of 20% or more. Bysiiljg the balance
point the reference data can be manipulated to fit the pestitata. A trajectory for

130



8.2 Knee Torque Prediction with a Simplified Body Model foriBGaation
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Figure 8.8: Simplified model Figure 8.9: Replay from the sit-to-stand experi-
for calibration: definition of ment: The knee torque calculated with the inverse
the angles, balance point and dynamics of the simplified model can match the
reference system. calibrated EMG-based biomechanical model.

the movement of the balance point could be found for eveay, teading to a good cal-
ibration. But this trajectory was different from trial tadl, reducing the predictability
of the model significantly.

8.2.4 Results

In this section, a simplified rigid body model was proposeldaised to produce refer-
ence values for calibration of the EMG-to-force parameteraddition, the feasibility
of such simplified models in connection with the exoskeletas investigated.

Unfortunately, the output of the simplified model is not aata enough to be used
for a reliable and accurate calibration. But it can be usedfough estimation of
the joint torques for this particular task with the suggestemplifications. Also, if
a trajectory for the balance point is established succlgstuquantitative analysis
of the torque during this movement can be performed. Thiseaachieved by either
integrating more sensors, or by calibrating parametersafance point trajectory that
are determined together with the EMG-parameters for sksii@-stand movements.
In that case, the number of parameters must be small and lhodedsible values to
not overfit the model to a specific data set.

With slight modifications, this model could also be used imalar fashion to the al-
gorithms presented for the RoboKnee or BLEEX, as describsddtion 2.1. In those
algorithms, the controller compensates a certain pergerafthe torque as computed
by the inverse model of the operator with the exoskeletort. a8Buvas shown above,
those estimations are very rough, and even more simplifieth®RoboKnee. As a
conseqguence, the actuation of the exoskeleton takes oayeng amount of torque

131



8 Miscellaneous Investigations on Body Models

in relation to the total joint torque. This leads to a systeauiring some training by
the operator to adapt movement patterns, and to react pydpehe support.

8.3 Conclusions on using Rigid Body Models

Utilizing rigid body models for the prediction of movemertsjoint torques as well

known from simulation in industrial applications opens @&trange of possibilities.
If successfully applied, interesting quantities can be goted through the dynamic
equations, allowing modification of joint torques for stabicontrol, checking the

movement on feasibility to suppress dangerous trajectamne much more, in combi-
nation with a position, velocity or acceleration contralle

Unfortunately, in our context it is very difficult to estadhi consistency between the
real world and the model, namely the human body, which islzigbn-rigid in the
trunk and possesses a large number of degrees of freedora jaitlis and between
the vertebrae of the spine. And since the torques and fonae ijoints of the human
body cannot be measured directly non-invasively, the katenstate of all imbs of the
operator and all objects having contact with the operatdrexoskeleton have to be
determined to incorporate the effect of gravity and iner@Gantact forces include the
ground reaction forces, forces from a chair the operatattisgin, or from a handralil
that is used during stair climbing.

While this may be achieved with external sensors obsenhegoperator and the
exoskeleton from a fixed reference frame, this is almost Bajide with sensors
mounted on the exoskeleton and operator alone, which isrezhjior a mobile system
that should not be confined to a special indoor environment.

Most of the projects described in chapter 2 using inversedhos of a model are
coupled to force or torque controllers, which take over datershare of the torque
required for a certain task. The question arises, what padoce such systems can
achieve. Unfortunately, this is not easy to answer, andmtigpen the model complex-
ity and reliability. But depending on the accuracy of thetegs the contribution of the
actuation has to be rather small especially for controlesystwhich rely on adding a
fixed torque share in relation to the statically stable p&herwise if the support is
large, and the computed support torque is larger than tijeéarequired for the task,
for example, when the operator wants to sit down while théesggries to maintain a
statically stable pose, the operator would have to actmelsk against the support to
perform the desired movement. Furthermore, in those systiearesulting movement
of the cooperation of the operator and the exoskeletonasuadknown, preventing the
inclusion of additional stability and safety algorithmsdescribed above.

132



9 Conclusion and Future Work

In this work an exoskeleton system for supporting the openaith extra force in the
knee joint is presented. The interface between the opeastrthe exoskeleton is
based on the evaluation of electric signals emitted by theciea during their activa-
tion.

The main focus of this research was put on the interface leettree human and the
exoskeleton and the recognition of the intended actionebiterator.

Two algorithms have been investigated for the purpose afrothing the support of
the actuation: The first algorithm estimates the operatws force production from
the EMG signals and contributes a linear share by the aotuafihe second algorithm
takes the muscle forces estimated from the EMG signals, iamdates the dynamics
of a rigid body model of the operator and the exoskeleton. résalting motions of
the rigid bodies is interpreted as the desired movementobperator.

The evaluation of the EMG signals for the first algorithm hbaeen performed with
a body model which is based on complex models developed irbitlraechanical
and biomedical communities. The parameter calibratiorhisf model uses a novel
approach to select relevant reference values based on thaeractivations and dis-
tributes the measured torque among the active muscles @gfect to their activation
and physiological cross-sectional area.

Both control algorithms have conceptual advantages aratid@tages: The sec-
ond system allows incorporation of a variety of algorithrmsrtodify the movement
because the trajectory of the exoskeleton is known in adydna experiments have
shown that the system is very sensible to inaccurate seeadings, making a practi-
cal application very complex and difficult. This approackibe to make sense, if the
exoskeleton construction is more complex, like in a fultpsuit. The first system
on the other hand is very robust and reliable, requiring @nfginimum of sensors,
because the complete kinematic state does not need to benknidvis simplicity is
traded for the possibility to include certain algorithnt, éxample, to enforce postural
stability, because the resulting movement is not known raade.

The mechanical construction of the exoskeleton and actudtiat was developed
to investigate the system behavior in real world experim@&vds not the main focus
of this work, but performed very well and allowed evaluatadrthe human-machine
interaction during the movements of interest. The architecis designed in such a
way that it can be easily extended with more joints.

In the introduction many different potential applicatidres/e been pointed out that
can take advantage of exoskeletons like the one presenthtsiwork. With the ex-
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9 Conclusion and Future Work

periments it was shown that for healthy operators the dgsir@vements can be suc-
cessfully performed in cooperation with the exoskeletoreteive support.

But with the end of this thesis, the research is far from fiatsHt rather opens a door
for further interesting research: Details of the body mame be further optimized,
for example, inclusion of activation dynamics, and the terdistribution during cal-
ibration can be further investigated. A small redesign &f ¢ixoskeleton can allow
faster movements with lower support to investigate the msimachine interaction for
more dynamic movements. For this, the model can be easigndgt to incorporate
the force-velocity relationship of muscle. It can also balgred if the support ratio
can be adapted on-the-fly to avoid oscillations in the humachine interaction, and
the controller can be modified to simulate joint stiffnesd &rction depending on the
degree of muscle cocontraction to smoothen the resultingti@jectories.

Looking at disabled people and patients opens a differealtestging field of re-
search: Since no two patients are equal, the quality of EM@ads and the contained
information have to be investigated with respect to the gl algorithms. More
signal processing stages may be introduced, and addisafety measures have to be
incorporated to react on unskillful behavior and spaséisiof patients.

This is all interesting and challenging work for the futufé.e motivation for this re-
search is further increased by the positive feedback onubkgations of the research
results from industrial companies, rehabilitation ingss, and patients, all showing
great interest in the development of the device.

134



List of Main Symbols

ai
eft)

E

R

g(q)
M (q)

—

c

> & ®

>

angle of the i-th joint
moving average of the raw EMG signal
tendon slack length from literature

I-th waypoint of a musculotendinous pathway in the localrdatate system it
is linked to

vector function that models inertial forces and gravity

nonlinear function representing the current system cordignn and geometry
matrix function that specifies mass distribution of thedigodies

vector of generalized coordinates

vector of joint torques and external forces

vector of generalized velocities

pennation angle

pennation angle at optimal muscle fiber length

normalized muscle fiber length

shape parameter of the exponential activation functiod,drhe logarithmic
portion of the piecewise activation function

general neural activation function

activation at point of transition between the two portiohthe piecewise acti-
vation function

aexp(U) exponential neural activation function

apw(U) piecewise neural activation function

e(t)

Eemg

raw EMG signal

error of the EMG-parameter optimization
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Egeom error of the geometry parameter optimization

F™  force produced by a muscle

Fy'  active muscle force

F™  maximum force of a muscle at optimal muscle fiber length
F'  passive muscle force

Fk’j“h force share of a muscle in entiyof calibration tablek
FM  force of the musculotendinous unit

Fa  force measured at the tip of the actuator

fo(IM) active force-length curve

fo(IM) passive force-length curve

L(e(t)) Lowpass filtering function applied to signelt)

[m length of the muscle fibers

I optimal muscle fiber length

It length of the tendon

It tendon slack length

Mt length of the musculotendinous unit

Ls,Ws length and width of the shank rectangle

L:,W length and width of the thigh rectangle

Ly, W, length and width of the trunk rectangle

Mi(ao,...,a3-1) transformation function for the i-th waypoint from the Ibcaordi-
nate system in the pelvis coordinate system

ms  mass of both shanks of the operator
m mass of both thighs of the operator
m,  mass of the trunk of the operator
Motal total body mass of the operator

R(x,Yi,z)" i-th waypoint of a musculotendinous pathway in the pelvisrdinate
system
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Uo

Uk.h

range of the postprocessed EMG signal

scale of the tendon slack applied to value from literature
joint torque derived fronfra and the knee angle

joint torque as a result of gravitation

postprocessed EMG signal

postprocessed EMG signal at point of transition betweertwioeportions of
the piecewise activation function

postprocessed activation offset

postprocessed EMG signal of a muscle in elhtof calibration tablek
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A Biomechanical Model

This section gives a quick overview of the necessary equstior the biomechani-
cal model used in chapter 4. The complete description isngivesection 4.3. The
estimated knee torque is calculated by:

N—1
T= % HE™
i=
with
Fimt = (FA”} + FF’,‘}) cosq, (force of the musculotendinous complex)
FA = fa(i™Foa (ui), (active muscle force)
Rl = fp(ﬁm>F0T, (passive muscle force)
AURT 1 o activat
a(u) = A1 (muscle activation)
M singy ;
Q= arcsin(o"linﬁb") , (pennation angle)
.M |
M= Ilﬁ-’ (normalized muscle fiber length)
o,
|m= \/( o1 SiNgy)? + (1M — #fgi)z, (muscle fiber length)
n—2
|mt = % IPi+1i —Pjill, (length of musculotendinous complex)
j:
R =Mi(ag,...,a;_1)P (muscle waypoints)

The order of computation is from the bottom to the top. Infithe system are the
values of the joint anglesy;, with 0 < j < J, andJ being the number of joints in the
model, and the postprocessed EMG sigoalfrom every muscle. Required constants
are presented in the following sections.
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A Biomechanical Model

A.1 Muscle Parameters

The parameters which have to be determined by a calibratiotine for every mus-

clei are: ¢ (tendon slack length scaled (shape of the EMG-to-force functiorf}

(maximum EMG signal), an#} (maximum muscle force at optimal fiber length).
The remaining parameters are given in table A.1.

Muscle i | r[m] [ 15 [m] [ 153m] | @ilded
Rectus Femoris 0| -0.039| 0.346| 0.084 5
Vastus Medialis 1/(-0.037| 0.126| 0.089 5
Vastus Lateralis 2| -0.037| 0.157| 0.084 5
Semimembranosus | 3| 0.038| 0.359| 0.080 15
Semitendinosus 4| 0.042| 0.262| 0.201 5
Biceps Femoris (long) 5| 0.042| 0.341| 0.109 0

Table A.1: Muscle index, moment arms;, tendon slacklengthstgyi, optimal mus-
cle fiber Iengthsl,gji, and pennation angles at optimal muscle fiber lenggh, of the
three extensor and three flexor muscles used for the biommethanodel. Data taken
from [DLH"90], except the moment arms, which have been derived fromamam
putations.

A.2 Limb Segment Transformation

To compute the waypoints of the muscle-tendon units in aeafie frame, the indi-
vidual limb segments have to be transformed into the saneeaete frame according
to the hip and knee joint angles. The segments consideredanerthe pelvis, femur,
tibia, and patella.

The model relating the joint angles to the segment transiton matrices is pub-
lished in [DLH"90], and summarized here for convenience. Some simplificatiave
been applied.

The transformation matrices needed here are homogenodsdatrices. The trans-
lation of frame B in frame A is defined by:

1 0 0 x
010

ATB(X7y7Z>: 0 0 1 >Z/ (Al)
0 001
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A.2 Limb Segment Transformation

The rotation of frame B in frame A around the z-axis with an@lis defined as:

cog0) —sin(@) 0 O

ARg(6) = sinc()e) cos;()@) (i(()) (A.2)
0 0 01

The transformation from the pelvis segment to the femur segns defined by the

concatenation of a translation and a rotation, which takés account the hip joint
angle,a,

PEVISM femur(@1) = PEVST140(—0.0707, —0.0661 0.0835) - "ORremur (a1) (A.3)

where HO is an intermediate frame. Hip adduction and ratatiameglected here.
The transformation from femur to tibia is defined by a tratiglaand a rotation,
which takes into account the knee joint angtg,

MU M ipia (a0) = ™ Ty (fi(a0), f3(0),0.0) - MRypia(a0)  (A4)

where H1 is an intermediate fram#,(ao) and f(ao) are functions of the knee angle
and take into account the small displacementiandy-directions, which occurs dur-
ing knee flexion, because the knee joint is not an ideal syouel. The functions are

defined through a series of interpolation points, given as jpd the knee angle and
the corresponding displacement.
For f{(ap) these are:

Pu= { (—209-0.0032,(~1.74,0.00179,(—1.39,0.00413),
(—1.04,0.00410, (—0.69,0.00213, (—0.35, —0.0010),
(—0.17,—-0.0031), (0.000,—0.00525 }

And for fg(ao):

Py= { (—209-04226,(-122-0.4082,(—0.52 —0.3990,
(—0.35,—0.3976), (—0.17,—0.3966), (0.000,—0.3960 }

The transformation from tibia to patella is defined by a ttaimsn and a rotation,
which takes into account the knee joint angtg,

P Mpateta(@0) = " Tha(FP(000), 1'(d0),0.0024) - Rpareiia( 7F(a0)) (A5)

L (ao) and fy(ap) are functions that describe the translation of the patsliaslides
around the knee jointf,”(ap) defines the rotation of the patella in relation to the knee
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joint angle. All three functions are defined through intéapion points, given as pairs
of the knee angle and the corresponding displacement aatiomtrespectively.
For f(ap) these are:

Pp= { (—209,0.0173,
(—0.69,0.0430),
(0.000,0.0496 }

—1.39,0.0324), (—1.04,0.0381),
—0.35,0.0469), (—0.17,0.0484),

—~~

And for f(ao):

Pp= { (-209-00219,(~157,—0.0202, (~1.39,0.0200,
(—1.04,-0.0204), (—0.69, —0.0211), (—0.35 —0.0219),
(_

0.17,—0.0223), (0.005 —0.0227) }
And finally for fP(ao):

Pp= { (—2.090.308),(—2.00,0.308),(—1.45,0.306),
(—0.52,0.270), (0.027,—0.036), (0.170,—0.280) }

The computation of the actual values of the functions isqgraréd by linear interpola-
tion between the given points.

The transformation from the pelvis to the tibia can be adtdyy concatenation of
the individual transformation matrices

PENVSM tipia (0l0, r1) = PV M temur (1) - ™" M ibia (00) (A.6)
and to the patella with
PEVISM pateltal @0, 1) = P*M ivia (00, 1) - "* M patelia( @0). (A7)

The transformation matrix that has to be applied to a speuifiscle waypoint de-
pends on the segment the waypoint is located in. The waypaimd their segment
location are presented in section A.3.

To compute the length of the musculotendinous path, all weyp have to be trans-
formed into the pelvis frame with the current knee and hiples@s stated in equa-
tion 4.10.
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A.3 Waypoints of the Musculotendinous Units

A.3 Waypoints of the Musculotendinous Units

The muscle waypoints are computed with a subset of the délaspad in [DLH"90],
which is summarized here for convenience. In tables A.2 tbeach musculotendi-
nous unit is defined through three-dimensional waypdﬁ(my, z) in the individual
body segments (pelvis, femur, tibia, patella). The waypwirthe reference frame,
R(x,y,2), can be obtained by transforming the waypoints with masrize described
in section A.2. The optional range specifies an intervallierknee joint angle. Only
if the current joint angle falls within the boundaries of theerval, the waypoint is in-
serted into the musculotendinous path. Those optional @iatgpare wrapping points,
which indicate that the tendon wraps around the joint undda angles. If this field
is left blank, the waypoint is always part of the musculoiands path.

A.4 Force-Length Curves

The interpolation pointB, of the active force-length curvfa\(ﬂm) [DLH 790] are given
as pairs of normalized length and normalized force:

Pa= { (—5.00,0.000),(0.000,0.000),(0.401 0.000), (0.4020.000),
(0.404,0.000), (0.527,0.227), (0.629,0.637), (0.719,0.857),
(0.861,0.950), (1.045,0.993), (1.218,0.770), (1.439,0.247),
(1.619,0.000), (1.620,0.000), (1.621,0.000), (2.200,0.000),
(

5.000,0.000) }

The interpolation point& of the passive force-length cur\fﬁ(rim) [DLH*90] are
given as pairs of normalized length and normalized force:

Po= { (—5.00,0.000),(0.9980.000),(0.999 0.000),(1.000,0.000),
(1.100,0.035), (1.200,0.120), (1.300,0.260), (1.400,0.550),
(1.500,1.170), (1.600,2.000), (1.601,2.000), (1.602,2.000),
(

5.000,2.000) }

The computation of the actual values of the function is pentd by linear interpola-
tion between the given points.

143
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R(XY,2) Segment Rangerad]
(-0.0295,-0.0311,0.0968)Pelvis
(0.0334,-0.4030,0.0019) Femur | —3.0<ap< —1.46
(0.0121,0.0437,-0.0010) Patella

Table A.2: Rectus femoris waypoint definition.

R(x,Y,2) Segment Rangelrad]
(0.0140,-0.2099,0.0188) Femur
(0.0356,-0.2769,0.0009) Femur
(0.0370,-0.4048,-0.0128)Femur | —3.0<ap< —1.21
(0.0274,-0.4255,-0.0131)Femur | —3.0<ap< —1.78
(0.0063,0.0445,-0.0170) Patella

Table A.3: Vastus medialis waypoint definition.

R(xY,2) Segment Rangefrad]
(0.0048,-0.1854,0.0349)Femur
(0.0269,-0.2591,0.0409)Femur
(0.0361,-0.4030,0.0205)Femur | —3.0<ap< —1.21
(0.0253,-0.4243,0.0184)Femur | —-3.0<ap< —1.92
(0.0103,0.0423,0.0141) Patella

Table A.4: Vastus lateralis waypoint definition.

R(x,Y,2)

Segment Rangerad]

(-0.1192,-0.1015,0.0695

Pelvis

(-0.0243,-0.0536,-0.0194)Tibia

Table A.5: Semimembranosus waypoint definition.

R(x.y,2)

Segment Rangerad]

(-0.1237,-0.1043,0.0603

Pelvis

(-0.0314,-0.0545,-0.014¢

)Tibia

(-0.0113,-0.0746,-0.024F

)Tibia

(0.0027,-0.0956,-0.0193

Tibia

Table A.6: Semitendino

sus waypoint definition.

R(xY,2)

Segment Rangefrad]

(-0.1244,-0.1001,0.0666

)Pelvis

(-0.0081,-0.0729,0.0423

)Tibia

Table A.7: Biceps femoris (long head) waypoint definition.



B EXxoskeleton Geometry

The actuator torquel,a, the actuator is producing is computed from the force sensor
measuremengp, with the joint angleqg, through

RSPS — RS(PS + dp)

Ta = —Fa (B.1)
\/(Pe+ )2+ R?
with P? = dicoqais— Qo)
P; = —disin(ais— ao)
Ois = Qt+0s

(B.2)

Figure B.1: Geometry of the actuator attachment: JO is the supportad ji and J2
the joints with which the actuator is attached to the brace®iing the limbs.ag is
the joint angle, ands anda; are displacement angles.

whered; is the distance from the supported joint (JO) to the first pwinere the
actuator is attached to the exoskeleton (joint #k)js the distance from JO to the
second point where the actuator is attached to the exoskefgtint J2), andos and
a; are displacement angles to avoid singularities when the goigles is 0, as shown
in figure B.1. The required parameters acgs = 0.579rad,d; = 0.061m, andd, =
0.362m.
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C Parameters of the Rigid Body
Models

Table C.1 describes all parameters that are used in the dgymaodel in section 8.1.
The location of the center of mass has been moved towardsethis po suppress the
strong influence of bad trunk angle measurements on thensystbavior.

Segment | msedkg] | L[m] | W[m] r
Upper body] 60.00| 0.60| 0.60| 0.200
Thigh 8.73| 0.50| 0.25|0.433
Shank 5.05| 0.48| 0.20| 0.433
Foot 1.26| 0.30| 0.06| 0.429

Table C.1: Data of the body segments: relative segment mmagg segment length
L, segment widttW, and the location of the center of mass in relation to the segm
length,r. Figures, except, for the upper body, can be found in [Win90a].

Table C.2 shows the points of origin and insertion used ferltbdy models. The
points have been chosen by hand. The given relative codediiave to be multiplied
by the length and width of the body segments to obtain theahctiordinates.

Muscle Origin Insertion
Hip flexor (0.10,—0.10) | (0.20,0.10)
Hip extensor | (0.00,0.05) | (0.05,—0.05)
Knee flexor | (0.10,—0.05) | (0.10,—0.04)
Knee extensor (0.09,0.05) | (—0.03,0.04)

Table C.2: Points of origin and insertion of the muscles included inllbdy model
for the knee.
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C Parameters of the Rigid Body Models

Table C.3 describes all parameters that are used in the npoesénted in sec-
tion 8.2. The total body massig iy = 83kg.

Segment My | L[M] | W[mM] r
Upper body| 0.6280| 0.60| 0.60| 1.200
Thigh 0.1000| 0.50| 0.25|0.433
Shank 0.0465| 0.48| 0.20| 0.433

Table C.3: Data of the body segments: relative segment nmags segment length
L, segment widtiW, and the location of the center of mass in relation to the segm
length,r. Figures, except, for the upper body, can be found in [Win90a].
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D Subspace Search Algorithm

This algorithm is used to determine the EMG-related pararseduring calibration
described in section 5.6.

In every iteration, this algorithm calculates the errordion E(A,S,m) at np x
ns points in the 2-dimensional space. It selects the minimurthexsubspace and
reduces the search interval to the dimensions of the stepasaund the minimum.
The algorithm stops, when the size of the search space isesrttanea andesin the
dimensions oA andSrespectively.

As, Ae: boundaries for the shape intervAlic [As, Al
S, S boundaries for the scale interv8e [S5, S
na : number of search points in shape interval
Nns: number of search points in scale interval

repeat
Ar = (Ae—As)/Na
S=(S-S)/ns
Eopt =

for A=Asto Ac do
for S=StoS do
Error=E(A,Sm)
if Error < Eopt then
Aopt =A
Sopt=S
Eopt = Error
end if
S=S+S
end for
A=A+Ap
end for
As = max(Aopt — An, As)
Ae = max(Aopt + Ap, Ae)
S=max(Sopt— S, S)
S =max(Sopt+ . S)
until Ae—As< épandS— S < &g

While not being very optimal in terms of computational calsg algorithm is quite
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D Subspace Search Algorithm

robust against running into local minima. As long as the globinimum is not located
in valleys more narrow than the interval width divided by thenber of search points
for every dimension, it will be found.
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