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Zusammenfassung

In dieser Arbeit wird ein Steuerungssystem für Exoskelettevorgestellt, das elektri-
sche Signale von Muskeln als zentrales Kommunikationsmittel zwischen dem mensch-
lichen Benutzer und dem Exoskelett verwendet.

Diese Signale werden auf der Hautoberfläche oberhalb ausgewählter Muskeln auf-
gezeichnet und spiegeln die Aktivierung der Muskeln wider.Sie werden durch ein
ausgeklügeltes, aber vereinfachtes biomechanisches Modell des menschlichen Kör-
pers ausgewertet, um die gewünschte Handlung des Benutzersabzuleiten. Eine Un-
terstützungsbewegung für diese gewünschte Handlung wird berechnet und durch das
Exoskelett ausgeführt.

Das biomechanische Modell vereint Ergebnisse von verschiedenen Forschergruppen
aus der Biomechanik und Biomedizin und wendet dabei einige für die betrachtete An-
wendung sinnvolle Vereinfachungen an. Es beinhaltet dabeiParameter, die bestimm-
te Eigenschaften des menschlichen Benutzers und dessen Zustand beschreiben. Für
diese Parameter wird ein Kalibrationsverfahren vorgestellt, das sich lediglich auf am
Exoskelett befindliche Sensoren stützt. Es bietet außerdemnoch einen tiefen Einblick
in die Funktionsweise des Modells.

Ein Exoskelett zur Unterstützung der Kniebewegung wurde entworfen und aufge-
baut, um das neu entwickelte Modell zu validieren und die Interaktion zwischen dem
Menschen und dem Exoskelett während alltäglicher Bewegungen mit Kraftunterstüt-
zung zu untersuchen. Die Ergebnisse dieser Untersuchungenwerden ebenfalls präsen-
tiert.
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Abstract

This work presents a control system for exoskeletons that utilizes electrical signals
from the muscles as the main means of information transportation between the human
operator and the exoskeleton.

Those signals are picked up from the skin on top of selected muscles and reflect the
activation of the observed muscle. They are evaluated by a sophisticated but simplified
biomechanical model of the human body to derive the desired action of the operator.
A support action is computed in accordance to the desired action and is executed by
the exoskeleton.

The biomechanical model fuses results from different biomechanical and biomed-
ical research groups and performs a sensible simplificationconsidering the intended
application. It contains parameters which reflect properties of the human operator and
his or her current body state. A calibration algorithm for those parameters is presented
which relies exclusively on sensors mounted on the exoskeleton, and provides deep
inside into the mechanisms of the model.

An exoskeleton for the knee joint support was designed and constructed to verify
the model and investigate the interaction between the humanoperator and the machine
in experiments with force support during everyday movements. Those results are also
presented here.
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1 Introduction

"To move things is all mankind can do; ... for such the sole executant is
muscle, whether in whispering a syllable or in felling a forest."

(Charles Sherrington,The Linacre Lecture, 1924)

The human body consists of more than six hundred muscles, producing movements
which are inseparably connected to its life. That does not necessarily refer to the vital
functions of the body, like breathing or the heartbeat. It refers to movement in general,
which is very important for all living creatures.

Aside from the immediate needs to eat, or the desire to communicate, be it with
words, gestures or the whole body posture, mobility is one ofthe most important things
in life. It does not only mean to travel around by car to a neighboring city or by
airplane around the world. Already the common daily activities are very important for
the quality of life: Getting up from bed in the morning and walking to the bathroom,
the breakfast table, or the refrigerator. Or during work, whether inside an office or
while carrying heavy parts in a factory.

Furthermore, lack of mobility often results in lack of participation in social life,
which in turn leads to an undesired reduction of communication. It is also important
for the body health to move around to activate the circulation system of the body, the
muscles, and to breathe fresh air.

In this work a device and control system are presented which support a human op-
erator with extra force in the knee joint. The device is worn around the leg and should
increase his or her mobility by supporting the thigh muscles. Such devices are called
exoskeletons.

According to [VBSS90],"Exoskeletons in general, are structures of rigid links,
mounted on the body of some living vertebrae and following the main directions and
having the main joints of the living organism’s endoskeleton."

To put it into the context of this work, the exoskeleton is in permanent contact with
the human body, resembling the limbs, with the intelligenceand flexibility to perform a
task originating from the human operator, while strength and endurance is contributed
by the machine. As far as the operator is able to, the cooperation between the two is
designed in such a way that the human is in control of the movements.

While the exoskeleton that is presented here - with one actuated degree of freedom
in the knee joint - already offers some support, an extended exoskeleton covering more
limbs and using the same interface has a variety of potentialapplications: For healthy
people they can give support while carrying heavy loads, forexample in a factory

1



1 Introduction

environment, on a construction site, or at home, transferring the major part of the load
to the exoskeleton to protect the body. Depending on the size, weight, and handling
of such devices, they could even be beneficial in everyday life at home, especially for
elderly people, to improve mobility. But not only healthy people can take advantage of
the support: Exoskeletons can offer assistance to patientsduring rehabilitation of the
locomotor system by guiding motions on correct trajectories to teach motion patterns,
or give force support to be able to perform certain motions atall. This could intensify
the training leading to better results and reduce the cost ofthe whole rehabilitation
process.

But exoskeletons do not always have to work in cooperation with the operator: Ex-
oskeletons also offer a unique way of giving force feedback to the human body. By
applying some resistance to the movement of the operator they can act as haptic in-
terfaces for virtual reality, telemanipulation, games, and entertainment: The virtual
world can be felt and manipulated. For example, stairs can besimulated, the walking
on muddy ground, or the effect of obstacles in an unstructured environment.

In a normal rather unstructured environment movements mustbe adapted perma-
nently to the situation: Steps have to be climbed, inclinations of the floor have to be
compensated, and finally, transitions between movements, like getting up from a chair,
walking, and climbing a stair, have to be performed fluently.

If proper hardware exists that actuates sufficient joints tosupport those movements,
the problem of recognizing the intended action of the operator arises. Only if this in-
tention is known to the system it can properly react either bysupporting the movement
or by hindering it to simulate external influences.

Such a system requires a flexible interface, because of the wide range of movements
to be performed, which collects all required information sothat the intended action of
the operator can be successfully derived.

As diverse as the applications are, so are the operators who will control the device:
From healthy and fit persons, to weak and disabled patients. Sometimes, a defect in
the locomotor system of the human body is also accompanied with a mental defect,
complicating things even more.

Ideally, the control system has to be adaptable: The exoskeleton should offer maxi-
mum flexibility for healthy people who can take advantage of that. For disabled people
the flexibility must be limited, to avoid undesired behaviorof the system if it cannot
fully be controlled by the patient. Complex control devicesmay require too much
mental effort, or simply cannot be handled. In such cases thecontrol system must take
over some additional functions, for example, maintenance of postural stability.

2



1.1 Initial Considerations

1.1 Initial Considerations

As was motivated in the previous section, the numerous applications lead to a num-
ber of different potential users of such exoskeletons, everyone of them with different
abilities, and with different requirements towards the control system. But all have in
common that an intuitive interface reduces the mental load that is required to handle
the system. The operator can focus on fulfilling a task with the exoskeleton rather than
focus on mere control of the device.

When considering the choice of input devices for an intuitive human-machine in-
terface, two aspects are important: First, the latency between the appearance of the
desire to perform a movement and the actual support has to be short, and second, the
flexibility of the interface to recognize a variety of movements needs to be given. Min-
imizing the latency is important for a powerful support through the exoskeleton. With
a high latency, it is impossible for the operator to control the device, because he or she
cannot react quickly to the resulting movement. The flexibility is important to allow
the exoskeleton to work in real-life environments.

The optimum would be, if the human wearing the orthosis simply tries to perform
the movement naturally, without any additional communication to the exoskeleton.
This effort has to be recognized by the interface with appropriate sensors to activate
the support. To come near this optimum, the interface shouldbe connected as close to
the neurological system of the human as possible.

The worst case would be to connect the exoskeleton to an external device, for exam-
ple, a keypad or a wheel that has to be manipulated: First, theoperator would have to
transfer his or her desired movement into a movement that will manipulate the input
device. Second, the signals have to travel completely through the body, and fulfill the
movement that results in manipulation of the input device. Only then can the control
system start the support.

By using the mechanical construction of the exoskeleton as the input device, the
transferring thought in the brain can be omitted, reducing the mental load. Unfortu-
nately, the interaction forces between the human operator and the exoskeleton cannot
be measured accurately to determine the intended action: During contact with the en-
vironment it cannot be distinguished between forces actingfrom outside, and forces
originating from the operator’s muscles, which indicate the desire of motion.

Moving one step closer to the origin of the motion leads to thecontraction of the
muscles. Prototype sensors exist to measure the muscle hardness [YINH04, AJL+06]
on top of the skin to derive the level of activation and the force output. But those
sensors are not readily available, and only preliminary studies on the quality of the
signals exist. But prior to the actual contraction of the muscle, thus even closer to the
origin of the desire, a signal is emitted by the muscle which can be detected by either
needle electrodes, inserted into the muscle, or surface electrodes, fastened on top of the
muscle that should be observed. This signal appears during activation of the muscle,
approximately 20–80ms [CK79, ZLMF95, VMIS90] before the resulting contraction
begins.

3
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Moving further along the neural pathways towards the brain would further reduce
the latency of the system, but unfortunately no sensors are available to extract detailed
information about the desired movement from the brain or spinal cord, necessary to
correctly identify a variety of movements. Recent results from brain interfaces can
be found, for example, in [BDK+06, Moo03, LSW+04, WMV00]. But it has to be
kept in mind that not all movements are controlled by the brain, especially rhythmic
movements, like walking, and cannot be extracted from there.

Motivated by this fact, this work focuses on investigating an human-machine in-
terface based on the above mentioned biological signals of the muscles, the so-called
electromyographic signals (EMG signals). Utilizing thosesignals is a good balance
between proximity to the origin of the desire and interpretability of the signals. Ac-
cording to [BD85], electromyography is"the study of muscle function through the
inquiry of the electrical signal the muscles emanate."

In the course of this work, electromyography always refers to surfaceelectromyog-
raphy, meaning that the sensors are put on the skin on top of the muscles. Beside the
easier application of the electrodes, signals from those sensors give a better estimation
of the overall activation of the muscle. Invasive electromyography is rather suited to
investigate the internal processes within a muscle, which is not required here.

Advantages of using EMG signals in general are:

• EMG signals are directly linked to the desire of movement ofthe person, whether
the movement is executed voluntarily or is initiated through a reflex response
(except for people with certain diseases).

• No movement of the limbs is necessary: If the muscles are tooweak or the
external load too heavy, theintentionof movement canstill be detected, although
no movement is performed.

• EMG signals are emitted unconsciously by the operator while he or she is per-
forming the desired movement or is trying to do so. No additional mental load
is created.

• The EMG signals are emitted early,beforethe muscles contract, because of sig-
nal propagation delays and because the muscle fibers need some time to contract.

• The measurement of the signals is not influenced by temporary external influ-
ences like contact forces, in contrast to force sensors.

Unfortunately, EMG signals have some properties which makethe practical appli-
cation difficult. Those are described in section 3.3.

For the purpose of this work, only healthy subjects have beenregarded, because
the EMG signals utilized here are always present. They may appear different, but the
information which is transported remains the same: It is directly linked to the desire of
movement. For patients this is not necessarily true, depending on the disease or injury.
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The signals may be distorted or almost not detectable in extreme cases. Adapting the
system to a variety of patients is a different and complex task, especially because more
stringent safety measures have to be implemented.

1.2 Problem Formulation

The exoskeleton is in permanent close contact with the humanbody. Since it does
not necessarily cover all limbs but only the ones that need support, the movement
generated by the exoskeleton must be in concert with movements of the other limbs.
Otherwise stable and safe locomotion is impossible. To achieve this, several problems
have to be solved.

Intention Recognition and Support Computation To compute a sensible sup-
port for the actuation, the desired action of the operator has to be known to the system.
As motivated in the previous section, the interface betweenthe operator and the exo-
skeleton is based on EMG signals. In addition, some information about the kinematic
state of the operator is known. The activation and the state information have to be
read and evaluated with a short latency to deduct the desiredaction of the operator and
subsequently a sensible support that can be contributed by the actuator. The latency
of the system has to be kept so small, that stable movement with a useful gain is pos-
sible. Otherwise the supported leg would always move late, leading to an unbalanced
movement. It is hard to quantify the latency more accurate than short enough. The
validity of the realized latency can only be verified with experiments that show the
overall performance of the system.

Predictability of Support The resulting support or joint trajectory has to be pre-
dictable by the operator, because he or she has to take the support into account during
the movement. If the operator is surprised or frightened by the behavior of the system,
he or she cannot take advantage of the support and will becomecramped and feel un-
well. But naturally, the operator has to learn to incorporate the given support into the
movements. This can be compared to two people working together on the same task,
for example, carrying a table. It is best if both can predict the behavior of the other one
to coordinate the own movement appropriately.

Parameter Calibration A system that is working so close to a human operator
possesses parameters that have to be optimized for the individual person. A calibra-
tion algorithm has to be developed and implemented that determines all necessary
parameters. To avoid limitation of the practical application of such an exoskeleton, it
is desirable that the calibration can be performed with a reasonable time and effort,
and without a complex external calibration setup. Some of those parameters have to
be calibrated whenever the exoskeleton is donned. It would render the idea of a mobile
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system useless if the calibration could only be performed ina special place, or with a
special laboratory setup.

Validation with Experiments The feasibility of the proposed system can only be
verified in experiments with a powered exoskeleton because of the interaction between
the human and the machine. The most important movements thatshould be supported
by the system and are used for evaluation of the algorithms, are: getting up from a
chair (similar to knee bends or when lifting an object), sitting down, slow walking, and
climbing stairs up and down. Arbitrary transitions betweenthose movements should
be possible, and the movements should be adaptable by, for example, stride-length,
gait velocity, and step height. To actually perform the experiments and to investigate
the human-machine interaction, an exoskeleton has to be designed and constructed.

1.3 Contributions of this Thesis

The work presented here is a study on the interface and control system based on bi-
ological signals which are recorded from the operator. By proper evaluation of those
signals, the intention of performing the movement can be detected, and the movement
can be adequately supported.

Although biological signals are a very good interface between human and machine,
those signals have rarely been utilized to control exoskeleton systems. As is described
in section 2.1, many of the current projects rely on computation of inverse dynamics to
estimate joint torques which are compensated in part by the actuation. Other projects
do use EMG signals, but in a rather basic fashion, not utilizing valuable results from
researchers of the biomechanical or biomedical communities who are experts in this
field. A rare exception for an EMG controlled arm reading information from two
muscles can be found in [RBFA01].

This thesis presents a control system with a new biomechanical model of the human
body that fuses models developed in the biomechanical and biomedical communities,
and adapting them to the specific requirements for exoskeleton control. Different find-
ings have been integrated, and complex models have been reduced to a sensible level
of abstraction in context of this work, as will be described later. To the best knowledge
of the author, it is the first time, that a sophisticated biomechanical model utilizing
EMG signals is applied to the control of a lower extremity exoskeleton.

Furthermore, a new calibration algorithm is presented thatallows the determination
of parameters depending on the operator and his or her current condition through sen-
sors mounted exclusively on the orthosis, in order to allow amore natural, predictable,
and smooth control.

The ability of the system to predict the intended motion of the operator is evaluated,
and the whole system is analyzed during experiments with theactuated exoskeleton.
Analysis of the experiments includes evaluation of the cooperation between the human
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and the machine, and the unconscious human-machine interaction during the move-
ments.

Finally, results from experiments with dynamic models are presented. Those models
can be used to estimate joint torques to: (1) predict joint angle trajectories in advance
in order to integrate algorithms for postural stability, and (2) to feed the calibration
algorithm with additional reference values which cannot bedirectly measured with the
exoskeleton.

In the presented approaches it is not necessary for the operator to learn a certain
language or gestures to use the interface. The system is completely intuitive. The
operator has to try to perform the movement, and the support will be added almost
instantly.

1.4 Overview of the Work

The work is organized as follows: Chapter 2 gives an overviewof other research
projects with exoskeleton devices, and describes alternative human-machine interfaces
implemented for those. It also summarizes achievements from the biomechanical and
biomedical communities that are utilized in this work. Chapter 3 gives the reader an
overview of the human body and the human locomotor system, and summarizes the
process of movement generation from the initial desire to the resulting muscle con-
traction. It also explains origin and some properties of EMGsignals and of human
muscle to motivate aspects that have to be considered and have been implemented in
the body model. Chapter 4 describes the evaluation of the EMGsignals to recognize
the operator’s behavior, the subsequent computation of support action, and the control
of the actuator. During this evaluation, model parameters are revealed that need to be
determined. The calibration of those parameters is presented in chapter 5. Chapter 6
describes the mechanical construction, all sensors and computer hardware of the exo-
skeleton, before experiments are presented in chapter 7. They show the calibration as
well as experiments performed with the actuated exoskeleton, and the system behavior
is analyzed and discussed. Chapter 8 describes an alternative approach to analyze the
intended movement of the operator with a dynamic rigid body model, and presents
a simplified model to investigate possibilities to obtain more reference values for the
calibration algorithm.

This work is concluded in chapter 9 with a summary of the results and an outlook
on possible future improvements.
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Exoskeletons that support a human operator in different tasks are not a new topic of
interest for researchers around the world. Important scientific research started in the
1970’s where the group around Vukobratovic played a pioneerrole: They had a clear
goal in mind to help patients with defects in their locomotorsystem to regain walking
capabilities. At this time, lack of computer processor power, heavy actuators (both
pneumatic and electrical), and heavy power supplies limited the realization of interest-
ing theoretical results. But nevertheless, researchers have been far from discouraged,
and continued their work that led to interesting results [VBSS90] as can be seen in
figure 2.1.

A large number of scientists have sticked to

Figure 2.1: Patient with pneumat-
ic exoskeleton with torso.

upper limb devices with a focus on hand pros-
thesis, because the required forces are rather low
and helpful devices can also be constructed with
a reduced degree of freedom.

In recent years, many exoskeleton projects
emerged due to increased performance of com-
puters, actuators, and power supplies. Potential
applications that have occupied the minds of sci-
entists and engineers for a long time seemed to
become realizable.

The mobility of the operator is becoming more
important, and due to the reduced size and weight
of the exoskeleton the operator can carry it in ad-
dition to his or her own body. By that it can also
support existing muscles, in contrast to a prosthe-
sis that replaces missing limbs.

Potential applications range from military units
to support soldiers in ground operations on one
side, over support for factory workers, pure entertainmentdevices to rehabilitation
aids and support for disabled or elderly people on the other side. A good overview of
recent projects can be found in [Fer05].

But not only the mechanical part is an important field of research: If a lightweight
and powerful exoskeleton existed, there still remains the problem of how to control the
device. The interface between the operator and the exoskeleton is at least as important
as the mechanical construction, since misinterpretation of the desired movement of the
operator can lead to injuries or worse.
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Different approaches to handle this problem exist, depending on the field of appli-
cation of the exoskeleton. Generally, a good mixture of accuracy and reliability of
detection, flexibility of the system and whether the operator has to adapt to the system
or vice versa, has to be found.

In Section 2.1 exoskeletons from other research groups are described together with
their control methods to summarize the state-of-the-art inthis area. Section 2.2 sum-
marizes biomechanical models, some of them coupled to EMG signals, in order to ana-
lyze behavior of the human body and effects of neurological injuries. From the wealth
of information that is available, regarding the origin and properties of EMG signals,
and of details about the mechanisms inside the human body, only those sources are
selected that are related to this work. Results which have been utilized in this work are
explicitly referenced in the respective sections.

2.1 Exoskeleton Research Activities

In this section, exoskeleton research activities of other groups are described. The
groups are presented in separate sections for clarity. Details of the information varies
greatly, depending on the published information.

Institute Mihailo Pupin, Yugoslavia: Exoskeleton Walking Aid

The primary goal of this research of Vukobratovic and colleagues was to develop ex-
oskeletal devices that can be worn by patients with deficits in their locomotor sys-
tem. Those devices were actively powered in the first versions by pneumatic actuators
(around 1970), and in later versions by electrical actuators.

The first version had four actuated degrees of freedom (hip and knee joints, both
legs). The ankle joint was initially passive and actuated ina later revision. The air
supply for the actuators and the computer were both separated from the exoskeleton
because of their heavy weight and large size.

Due to the low computational power of computers at that time,the joint angle trajec-
tories have been computed off-line and were replayed duringthe experimental trials.
No feedback from the patient or environment was incorporated.

A full paraplegic patient unfortunately could not walk alone with this device. He
needed two people for support or a rolling aid to maintain balance.

To allow incorporation of overall stability control, the exoskeleton was extended in
1971 with a torso frame, adding two degrees of freedom to the system (in the frontal
and sagittal plane). Software controllers were now responsible for moving the limbs
along the desired trajectories, and overall stability was maintained by computing sim-
plified correction terms with the zero moment point (ZMP). Those correction terms
have been tailored to the task of walking on level ground. Actuation of the trunk was
mainly used to maintain stability. Equipping the soles of the exoskeleton with force
sensors allowed the incorporation of feedback from ground reaction forces to improve
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stability and safety. It allowed the patient to walk alone, only with the aid of crutches,
as shown in figure 2.1.

After performing many experiments it turned

Figure 2.2: Patient with the elec-
trical actuated exoskeleton.

out that the main drawback of the system was its
heavy weight of 17kg (excluding air supply and
computer hardware). This could be reduced in a
new version to 12kg by using state-of-the-art ac-
tuators. But limitations still remained because of
the air supply and large computer hardware: The
system was confined to indoor use in a clinical
environment.

A larger redesign of the exoskeleton led to a
16kg version with electrical actuation, that was
able to follow the trajectories more accurately
and more smoothly. Focusing on patients with
dystrophy in the hip and thigh muscles, the de-
gree of freedom was reduced, and the advent
of microprocessors resulted in a more compact
and completely portable version as shown in fig-
ure 2.2.

Controlling the different gait patterns was pos-
sible with different switches for (a) gait on level ground, (b) upstairs, and (c) down-
stairs. Gait pace, stride and turning to left or right was adjusted with switches. The
gait cycle was always beginning with the left leg.

A 2kg battery allowed autonomous walking for 45 minutes on level ground or
"climbing 2-3 times the stairs to the third floor"[VBSS90].

A good summary of the research and details of the control scheme was published
in [VBSS90].

University of Berkeley, USA: BLEEX

The BLEEX project is running for several years already and has finally resulted in a
company called Berkeley ExoWorks.

The focus of the Berkeley Lower Extremity Exoskeleton (BLEEX) project is to
design and construct an exoskeleton for human strength augmentation. It should be
used by soldiers, firefighters, and disaster relief workers to carry heavy loads faster
and over longer distances in outdoor environments than would normally be possible.

Two versions of BLEEX currently exist. Some conceptual details can be found for
version 1 (shown in image 2.3), whereas details of version 2 are held secret because of
the U.S. military. BLEEX 1 consists of a metal frame that holds a backpack and two
exoskeletal legs. Actuation is performed at the hip, knee, and ankle joint in sagittal
plane, the remaining degrees of freedom in hip and ankle can be moved passively.
Force sensors are attached under the soles of both feet.
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It is designed for autonomous operation by a small fuel engine that supplies the
onboard computer and the hydraulics with power [ZKC05].

Since the desired field of application demands

Figure 2.3: BLEEX 1.

a mechanically robust system, no sensors are
used which are directly attached to the operator
to record biological signals. Furthermore there
are no sensors between the operator and the exo-
skeleton measuring the interaction forces since
the points of contact between the two may be un-
known or changing and are hard to measure.

But nevertheless, the principle of the control
scheme is to minimize the interaction forces be-
tween the human and the machine: The machine
gets "out of the way" of the operator as quickly as
possible, not to hinder the movement. Since the
payload is attached to the exoskeleton, the opera-
tor does not feel the weight of the load [Kaz05].

To achieve this, a model of the exoskeleton
was developed, and the inverse dynamics of this
model delivers the positive feedback for a closed
loop controller with a target value of zero. The
gain is set slightly smaller than 1.0 to compen-
sate the major part of the weight and inertia
of the exoskeleton. The operator has to move the remaining part and his own
body [KHS05,KS06].

There are no algorithms implemented to control postural stability to avoid unexpect-
ed forces acting on the operator. This has to be managed completely by the operator,
requiring quick response of the system to operator imposed movement, so that coun-
terbalancing movement and reflexes can be performed.

Due to the sensitivity of the model to the payload recent developments tend toward
a hybrid control method using a position controller and the model based torque com-
pensation described above, depending on the phase of gait, as published in [KSH06].

University of Michigan, USA: Powered Lower Limb Orthosis

The powered lower limb orthosis developed at the Universityof Michigan aims at reha-
bilitation of patients with neurological injuries. Investigations focus on consequences
for the patient (immediate and long term), changes in movement behavior, and if cer-
tain simple control modes can be practically handled by patients.

The lightweight actuated orthosis, shown in figure 2.4, should allow more task spe-
cific training during gait rehabilitation by replacing expensive and strenuous manual
assistance from a therapist. Hopefully, this will help to restore lost locomotion capa-
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bilities of patients more effectively, concerning the quality of progress, and will reduce
the costs of the whole process.

The orthosis is powered at the knee and ankle joint with artificial pneumatic muscles
in sagittal plane. The air supply and the controller are not mounted on the exoskeleton.
Since it is mainly designed as a rehabilitation device in a clinical environment, this is
not a severe restriction. A detailed description of design and construction can be found
in [FCH05].

Three modes of operation have been investigated [SGF05]: The first mode utilizes a
foot switch and was used to study the mechanical performanceof the orthosis during
ankle plantar flexion1. This foot switch was mounted under the forefoot and maximal-
ly activated the pneumatic ankle flexor muscle when the forefoot touched the ground.
When the forefoot lost ground contact during toe-off, the artifical muscle relaxed com-
pletely. Experiments showed that the artifical muscles wereable to produce a substan-
tial torque contribution to the movement.

The second mode used EMG signals of the

Figure 2.4: Powered Lower Limb
Orthosis.

soleus2 as the controller input. The activation
of the pneumatic ankle plantar flexor muscle was
linearly related to the EMG signal of the mus-
cle. Experiments involved thirty minutes of walk-
ing for healthy people. At the beginning, people
could not benefit from the torque support offered
by the actuation. But after a couple of minutes
they could adapt their muscle activations proper-
ly, resulting in a kinematic gait pattern close to
normal. The amplitude of the recorded EMG sig-
nal was reduced to about 50%. This is an impor-
tant result, since it shows the capability of human
to selectively change the muscle activations in
walking to adapt to altered musculoskeletal me-
chanics.

The third mode was tested with partially para-
lyzed patients: A hand-held push button activated the artificial plantar flexor muscles
proportionally while elastic cords applied the necessary torque to allow toe clearance
during swing phase. The torso was supported with a harness that relieved the patient
of 30–50% of the body weight. The push-button was either under control of a therapist
or under control of the subject. Results revealed that soleus and gastrocnemius3 acti-
vation was not decreased during both setups. For rehabilitation this is a useful result
since the patient is not getting more passive as he or she getssupport from outside,

1The ankle performs aplantar flexionwhen the forefoot is movingawayfrom the body, in contrast to
thedorsiflexion, where the forefoot is pulledtowardsthe body.

2Ankle plantar flexor muscle in the back part of the calf, running from just below the knee to the heel.
3Ankle plantar flexor muscle. Running in parallel to the soleus.
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which could hinder the rehabilitation progress. On the other hand, some patients could
not use the push-button because it required too much mental effort. Subjects that were
able to use it by themselves felt more comfortable being in control.

Yobotics Inc., USA: RoboKnee

RoboKnee is an exoskeleton developed by the company Yobotics, a spin-off from the
Massachusetts Institute of Technology Leg Laboratoy founded in 2000.

The device is supporting the knee motion with

Figure 2.5: RoboKnee.

a series elastic actuator attached to the thigh and
shank as shown in figure 2.5. The control system
calculates the actuator force based on the knee
torque necessary for maintaining a statically sta-
ble pose. This is performed by estimating the
ground reaction forces under both feet with two
load cells. From the actuator length the knee an-
gle is derived. It is assumed that the ground re-
action forces are completely vertical and that the
hip joint is located above the ankle joint. Through
inverse computation of the dynamics of this model the knee joint torque is computed
which is required to maintain a statically stable pose with the current angular configu-
ration, even when the system is in motion. This knee torque ismultiplied by a factor
that defines the support ratio of the actuation, resulting inthe amount of support the
actuation is contributing to the motion [PKMC04].

Depending on the difference between the torque required to maintain a statically
stable pose computed through this very simple model and the torque actually required
to perform the desired movement, the muscle activation pattern that successfully per-
forms the desired task with support can differ greatly from the pattern without support.
In some cases, for example when climbing down stairs or sitting down, the user has
to actively work against the actuation or the amplification factor must be set far be-
low 1.0, offering less support. If the ratio is rather small, a reduction of the muscle
activation will be sufficient to perform the movement. A longer training period can be
necessary during which the operator learns to work with the exoskeleton.

The next steps of development involve inclusion of hip and ankle actuation and
better detection of the operator’s movement intent.

University of Tsukuba, Japan and Cyberdyne Systems: HAL

The Hybrid Assistive Leg (HAL) is developed in cooperation of the Japanese Uni-
versity of Tsukuba and the Cyberdyne Systems company. Different prototypes of the
mechanical construction exist, of which two are shown in figure 2.6. Motivated by
the rapidly aging — but technology-loving — society in Japan, the project focuses on
supporting elderly and gait disordered people.
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During the course of the project, different control strategies have been developed
with the primary interface being EMG signals from the operator’s muscles. Early
prototypes consisted of a system with four actuated joints at the hip and knee of both
legs, with passive joints at the ankles. The latest development (HAL 5) also includes
actuated shoulder and elbow joints, as shown in figure 2.6.

The first published control strategy for HAL is

Figure 2.6: Hybrid Assistive Leg
(HAL): version 3 (left) and ver-
sion 5 (right).

the "phase sequence algorithm" that was demon-
strated for the stepping-up motion [KS01]. In this
approach the stepping-up movement is subdivid-
ed into five phases which are handled by a state-
machine: leg raising, stepping up, leaning for-
ward, hind leg raising, torso erection. Transition
to the next state is performed when the joint an-
gles and the center of gravity measured beneath
both feet meet certain criteria. Each phase has
an associated predefined trajectory for all actu-
ated joints. The EMG signal is picked up from
the rectus femoris4 to initiate the movement. Af-
ter reading an increased muscle activity, the EMG
signal is evaluated for 300ms and the numerically
integrated postprocessed EMG signal is converted into ahip angleby a linear relation-
ship that was calibrated before. This angle is used as the reference for the position
controller of the system. After the 300ms interval the statemachine can decide the
transition based on the angle measurements, and predefined trajectories are used for
the rest of the movement.

An improved version of this control structure with an extended state machine incor-
porating standing up, sitting down and walking can be found in [KKS03].

But this control scheme lacks flexibility and was replaced with newer versions of
HAL [KS02b]: Four muscles responsible for flexion and extension in the hip and knee
joints have been recorded, and support torques for the actuation in those joints have
been computed in linear relation to the postprocessed EMG signal. The parameters of
this relationship have been calibrated by the following setup: The operator was sitting
upright on a chair without ground contact below the knee and above the hip. The actu-
ators produced varying torques from 0Nm to 32Nm in 8Nm steps,while the operator
countered the torque with his own muscles and tried to maintain the upright position.
The postprocessed EMG signal was then related to the torque of the actuators. The
estimated torques based on the EMG measurements are used as the target values of
the control algorithm. To remove discomfort for the operator that was observed dur-
ing experiments, the torque estimation had been modified: The hip torque calculation
neglects the hip flexor activity during floor contact with therespective leg while walk-
ing, to make the system response more comfortable. The standing up movement uses a
feedforward controller with four phases: (1) sitting, (2) hip flexion and knee extension,
(3) hip and knee extension, (3) standing. During phases (1) and (4) the controller out-

4The rectus femoris is a knee extensor muscle.
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put is 0Nm for all joints, during (2) and (3)fixedtorques are used for each joint in each
phase (±20Nm depending on direction of movement). State transitions are performed
when floor reaction forces and joint angles meet certain criteria [KS02a].

To further improve the performance of the system, the exoskeleton is modelled
through an inverted pendulum with gravity, inertia, and viscous friction. A compensa-
tion term is added to the supporting torque to regulate the joint impedance [LS02a,
HKS05, LS02b]. Other small variances of the control schemescan be found
in [LS03,KS04]

In figure 2.6 (right side) the latest development, HAL-5, is shown. Unfortunately no
details have been published so far.

Kanagawa Institute of Technology, Japan: Power Assisting S uit

Researchers of the Kanagawa Institute of Technology have developed an exoskeleton
for assisting nursing personnel when handling patients, asshown in figure 2.7.

The suit covers shoulders, arms, torso, waist

Figure 2.7: Exoskeleton to sup-
port nurses while carrying pa-
tients.

and both legs, weighting a total of 30kg. It sup-
ports the operator at the elbows, waist and knees
with pneumatic actuators.

The controller structure calculates the joint
torques required to maintain a statically sta-
ble pose by computing the inverse of a rigid
body model that takes into account the current
joint angles and masses of the components of
the exoskeleton and the weight of the patient.
The weight of the patient is measured before-
hand [YINH04].

The operator’s own muscle force is recorded
by muscle hardness sensors which consist of mini
load cells with contact plates taped to the skin sit-
ting on top of the muscle bellies, and will proba-
bly be integrated into the control in later versions.

Interaction with the exoskeleton is based on
the fact that the torques imposed by the opera-
tor on the joints of the exoskeleton overlay with
the torques produced by the actuators, similar to the RoboKnee. Arbitrary movement
patterns are possible, although not necessarily intuitively at first: Depending on the ac-
curacy of the inverse calculation and the effects of the omitted dynamics of the system,
necessary muscle activations to move in concert with the exoskeleton and the load can
be very different from the intuitive activation patterns. Handling the patient with the
exoskeleton may require some training.
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Nanyang Technological University, Singapore: NTU Exoskel eton

The exoskeleton developed at the Nanyang Technological University is designed for
performance augmentation of healthy people, like infantrysoldiers or emergency per-
sonnel. It should allow the operator to carry heavy loads faster and over longer dis-
tances compared to normal conditions.

In contrast to more traditional exoskeletons, the NTU exoskeleton does not embrace
the operator at the legs, except for some sensors to read current joint angles. Instead,
it features two actuated legs which hold a payload frame, andthe operator is standing
only on the footplates of the exoskeleton, as shown in figure 2.8. The exoskeleton is
completely carrying itself and the payload, and is onlyguidedby the operator.

The idea of the control scheme is to follow the

Figure 2.8: NTU exoskeleton.

trajectory of the operator’s foot with its own foot-
plate during the swing phase of each leg. This
allows the operator to provide information about
the desired velocity and stride length of gait. The
required information is taken from the operator’s
joint angles, and not from contact forces between
the exoskeleton and the human.

In theory, one would expect it to be difficulty
to perform a target motion with the foot, while
being rigidly attached to the footplate of the exo-
skeleton that should follow the motion. Unfortu-
nately, it is not mentioned in the publications how
this problem is solved.

The exoskeleton maintains balance during the
motion by utilizing the concept of the ZMP: The
controller moves the actuated joints in such a way
that the ZMP remains within the support region.
The support region is defined as the footprint, if
only one foot touches the ground, otherwise it
is defined as the convex area encompassing both
footprints. Modification of the ZMP by the controller is performed by changing the
angle of the exoskeleton "trunk", which is the payload frame. The target ZMP the con-
troller tries to follow is the ZMP measured from the human body alone. The ground
reaction forces for computation of the ZMP are measured withforce sensors embedded
in the feet of the exoskeleton [LLY,LL04].

Tohoku University, Japan: Wearable Walking Helper

The Wearable Walking Helper (WWH) of the Tohoku University of Japan is a lower
extremity exoskeleton, covering both legs. The hip and ankle joints are both actuated
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in sagittal plane with a rotatory actuator in the hip joint, and a long linear actuator
connecting the hip and ankle to actuate the knee joint.

The goal of the WWH is to support the opera-

Figure 2.9: Anti-gravity system.

tor during walking and standing by compensating
some of the body weight. The required support is
calculated by an inverse model without taking in-
to account joint angle accelerations [NSWK05a].
Joint angles of the hip, knee and ankle are mea-
sured and fed into a planar model of the operator
consisting of a four link open chain. The setup
used for the experiments involved only one actu-
ated leg, the other was not regarded.

The support can be adjusted and is calculated
through the torque required to maintain a statical-
ly stable pose multiplied by a gain. In the experi-
ments presented in [NSWK05a] the gain was set between 0.0 and 0.5 for the knee and
hip joints.

Experiments performed with the exoskeleton showed that it could add support to
the knee extension task. This was tested by standing on one foot, and measuring the
force acting on a sensor installed between the non-supporting foot and the floor while
maximally activating the knee extensor muscles. A second experiment showed that it
was possible to perform significantly more knee bends when the support was activated.

The control method was improved in [NSK05], taking into account ground reac-
tion forces with force sensors to support walking. The system was investigated with
stepping up and down, and while walking on a treadmill. The strain was measured
through the heartbeat of the subject, and was shown to be reduced. In [NSWK05b] the
system was enhanced with dynamic terms, and experiments included the sit-to-stand
and stand-to-sit movement without taking into account external contact forces from
the chair. The experiments showed a significant decrease in muscle activation revealed
by EMG signals.

University of Washington, USA: Arm Exoskeleton

This project is now homed in the BioRobotics Laboratory of the University of Wash-
ington. Early work has been performed by Rosenet al. in the Tel Aviv University in
Israel. The exoskeleton consists of one arm with actuated shoulder and elbow joints
with one degree of freedom each, and is attached to the wall asshown in figure 2.10.

It is one of the rare projects that utilizes EMG signals in a similar fashion as the work
presented here: by feeding them into a complex body model to calculate the resulting
joint moment which is used by a torque controller.

In early work of this group a Hill-type muscle model [Hil38,Win90b] was compared
to a neural network, utilized to predict the joint moments [RFA99] during elbow flexion
and extension tasks while holding a load. It showed a slightly better performance of
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2.1 Exoskeleton Research Activities

the neural network approach. It has been assumed that the neural network adapted
itself better to the specific circumstances, namely the taskand operator, but would not
be able to perform so well in previously untrained movementsas the more general
Hill-type muscle model. The Hill-type model did not containany parameters that had
been calibrated prior to the prediction experiments, asidefrom the normalization of the
EMG signals to a maximum value, recorded during maximum voluntary contraction.

Those experiments led to the the EMG-

Figure 2.10: EMG controlled
arm.

controlled arm exoskeleton presented in [RB-
FA01] and shown in figure 2.10. The experi-
ments involved lifting a weight by flexion and
extension of the elbow joint in cooperation with
the rotatory actuation of the exoskeleton. The
actuator supported the movement with additional
torque, based on the estimation of the operator’s
own torque contribution from the EMG signals
multiplied by a support ratio.

A parameter optimization of the EMG process-
ing algorithm was presented for an improved ver-
sion of the model in [CRP+05] and is based on a
genetic optimization algorithm.

Latest developments in this project include the
analysis of kinematic and dynamic data of daily

actions [RPM+05] to design a seven degree of freedom exoskeleton arm [PR06].
The biomechanical model developed for this arm exoskeletondiffers in some as-

pects to the model presented in this work: It is more complex,and contains more
properties and parameters, and details of the modeling are different. Those details can
be found in [RFA99,CRP+05] for comparison. Furthermore, the calibration algorithm
as a whole is different from the approach presented in this work.

Upper Extremity Exoskeletons

Surveying the literature reveals that most of the research utilizing EMG signals to
control a robotic device is performed on the upper extremities with focus on extend-
ing limbs of amputees, like replacing the hand [ZKWBH95, ITKI92, HG02, FTKO03,
KOT92], and, in more recent years, to support rehabilitation. In those scenarios, classi-
fying the recorded signals into specific patterns which are related to predefined move-
ments is a well accepted approach. Classification has been performed with a variety
of different methods, for example, with fuzzy rules for multifunctional hand pros-
theses [AW05, CYL+00], and with neural networks [CMM05, HC99, KOT92, AK00,
KYNK04,NKYK03]. In [Whe03] evaluation of the signals was performed with a Hid-
den Markov Model.

A recent example of EMG evaluation to control an actuated hand orthosis has been
published in [MFG05]. There, EMG signals have been evaluated continuously with a
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moving average filter, and have been compared to a predefined threshold. When the
threshold is exceeded, a preset hand closing motion was performed. Upon relaxation
of the muscles the hand was opened again.

In [DLM04] a handexoskeleton with pneumatic actuators is tested with three differ-
ent control schemes to restore dexterity of completely paralyzed hands: (a) threshold-
based binary on/off control, (b) control signal is set proportional to EMG activity, (c)
evaluation of the EMG signal of the biceps muscle activated during a reaching task,
and learning the timing of this muscle’s activation in relation to the pinch operation in
the "reach and pinch"-task. In cases (a) and (b) the EMG signals have been record-
ed from muscles of the contralateral side, whereas in (c) upper arm muscles from the
same side as the paralyzed hand have been used.

In [AAB05] a forearm exoskeleton for rotation around the axis of the forearm is
controlled by mapping the muscle activation linear to the target angle, if the activation
exceeds a certain threshold.

An EMG-based shoulder exoskeleton with two degrees of freedom is presented
in [KIY +03]. EMG evaluation is performed with a combination of fuzzy-rules and
a neural network to take into account the displacement of muscles in different shoul-
der configurations.

Other exoskeleton devices for shoulder, arm, and lower backsupport can be found
in [KET+03,KS05,NNH+98,KLLK05,TC03,NKYK03].

2.2 Biomechanical Models

For the lower extremities, pattern classification and replaying predefined trajectories is
not possible if the system should permit the operator to react to different circumstances
in a natural environment, including obstacles, floor inclination, and steps. The EMG
signals have to be evaluated in more detail, either by training a more complex black
box, or by implementing a body model where the desired motioncan be read from the
model behavior. As a matter of fact, the question of complexity of the model arises.

Such models have been developed by researchers with a biomechanical or biomed-
ical background [ZW90]. They have been mostly used for the study on the locomotor
system of the human body to investigate how neurological signals generate movement,
how this movement is controlled and how diseases affect the locomotor system. They
allow, besides a detailed analysis of the operator’s intention, an interesting and deep in-
sight into the behavior of the human locomotor system. The drawback of such models
is the potentially large number of parameters that need to beadjusted. But in contrast
to the black box models where those parameters have to be learned with a large set
of training data, many parameters can be identified by explicit measurement or can be
approximated by constant values found in the literature from previous experiments.

But still, it is very easy to drown in the great number of details scientists have found
out. In [Hat81] for example, chemical processes of the muscle fibers are modelled to
explain muscle contraction in great detail.
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A good overview and comparison of different models, for example, the molecular
level versus the macroscopic level, can be found in [Zah90].In [SBHR00, BD85]
different aspects are summarized that can affect the origin, transmission and recording
of EMG signals. Important work describing properties of muscle and tendon on a very
useful level is published in [Zaj89].

A very important and popular biomechanical model of the human lower extremities
has been published in [DLH+90]. It is in part a collection of anatomical data presented
in previous work by other researchers, but it also contains new and important data of
tendon pathways defined by wrapping points that are applied in certain intervals of
joint angles. Those waypoints are needed for accurate modeling of skeletal muscles
considering different joint angles, and to compute moment arms and resulting joint
torques. Previous work mostly reported only points of origin and insertion of muscles
measured from cadavers. The background of this research wasto simulate how ortho-
pedic surgeries affect muscle forces and torques around joints. Figure 2.11 shows a
screenshot of the simulation software.

Modeling the behavior of individual

Figure 2.11: Screenshot from the
simulation software SIMM, presented
in [DLH+90].

muscles is frequently performed through
Hill-type muscle models. Those mod-
els are describing the behavior of mus-
cles with data recorded from observation
during experiments (phenomenological
models), not from their internal process-
es. They incorporate a contractile force
producing element, and parallel and se-
ries viscoelastic elements modeling the
passive properties of the tissue. A good
overview and analysis of those models
can be found in [Hil38,Win90b].

In recent years modern versions of the
Hill-type model have also been used to analyse human movement with respect to
the neural commands that activate the muscles. Results are used to gain knowledge
about strategies of muscle activation during locomotion [Nie03] and finger move-
ment [MA04], or effects of injury and disease [MGLB02]. The implementation of
a detailed muscle model to be used for a reliable controller for functional electrical
stimulation is described in [BCL+00].

Such combination of EMG evaluation and muscle models have been developed for
the lower back, elbow, shoulder, knee, and ankle joints. A good compilation of refer-
ences can be found in [LB03]. All those models require transfer functions which relate
neural activation, measured through the EMG, to muscle activation, and muscle acti-
vation to muscle force. Different EMG to muscle activation functions are suggested
in for example [Zaj89, LB03, MB03], and different relationships have been observed
during experiments with individual muscles [BD85].

An improved version of the lower extremity model [LB96] was utilized in [LB03],
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where the knee torque was estimated based on EMG readings fordifferent tasks includ-
ing isokinetic dynamometer trials (active and passive flexion/extension under different
loads and different velocities), running, crossing and cutting steps. The body model
in this work consists of 13 lower leg muscles, some of which could not be measured
directly. Parameter optimization was performed with inverse dynamics, fed with limb
joint kinematic data that was recorded with a 3D-vision system. The data processing
was performed offline, and the system was not utilized to control a device. Instead,
it demonstrated the validity of the model. During calibration, the parameter set was
subdivided into EMG-related parameters and geometry parameters. The EMG-related
parameters are sensitive to electrode placement, skin properties and the overall con-
dition of the subject and have to be recalibrated for every experimental session. The
second group needed only to be calibrated once for every subject. Repeated trials with
weeks in-between showed that it was indeed sufficient to recalibrate the EMG-related
parameters, further increasing the trust in the model. The mean residual prediction
error was about 12Nm.

In [MGLB02] a virtual arm controlled with EMG signals is presented. The aim of
this study was investigation of neuromuscular control of arm movements. A biome-
chanical model for the human arm was developed, incorporating all major muscles
spanning the elbow. The joint torque estimation was based onrecorded EMG sig-
nals. During the experiments the subject’s monitored arm was fixed and hidden from
observation. The only visual feedback was provided througha computer generated
3D-visualization of the arm movement as predicted by a simulation using the estimat-
ed torque. With those experiments muscle synergies and muscle activation strategies
have been examined. In a second experiment, change in muscleactivation patterns in
response to a simulated neurological injury was investigated.

Several other projects also investigated teleoperation with EMG signal evalua-
tion [AK05,AK06,FTKO03,FWB+96].

Another recent development uses two different ankle modelsto control an ankle
foot prosthesis: The first model utilizes a two-dimensionaldynamic ankle model in
sagittal plane with passive damping, stiffness, and the force-velocity property5 being
modelled. The second method uses a neural network to predictthe resulting ankle posi-
tion from the EMG signals. Experiments were performed with abelow knee amputee,
whose residual muscle activity from muscles moving the ankle joint was recorded
with fine-wire electrodes. The subject was standing on a platform that could imitate
an ankle foot prosthesis, and was asked to perform ankle movements with the residual
muscles from the affected leg. This resulted in movements ofthe platform. Analy-
sis of the experiments revealed that the muscle model turnedout to be superior to the
neural network prediction in terms of producing smoother and more natural trajecto-
ries [ABH05].

5The force a muscle can produce is depending on the length change per unit of time. This is explained
in section 3.2.
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2.3 Remarks

The previous sections have given an overview of research projects with exoskeletons
and evaluation of EMG signals. Two main observation can be made:

• Control strategies without EMG signals are mainly employed where mechanical-
ly robust and reliable system behavior in unstructured environment is required,
or where ease of application is needed. EMG-based control algorithms are main-
ly used in medical applications because of the supervised environment, or where
simplified, delayed and fault-tolerant signal evaluation is possible, for example,
for a hand prosthesis with a limited degree of freedom.

• Applications where EMG signals are utilized in a more elaborate fashion are de-
veloped with a biomechanical or biomedical background mainly for offline anal-
ysis to study behavior of the human body. Systems originating from robotics re-
search groups are lacking sophisticated EMG-based models which can improve
the system behavior.

Unfortunately there seems to be a big gap between the robotics research groups
and the biomechanical/biomedical groups. Interesting andimportant results achieved
in the latter two groups are not wide-spread in the robotics community, although the
integration of recent findings can considerably improve theperformance. One rare
exception is presented in [RBFA01], where sophisticated EMG evaluation is applied
to an exoskeleton system.

The reason for this may lie in the complexity of the unfamiliar topic which needs to
be reduced to a practical level. Simplification of those models needs to be performed to
keep the number of parameters and the computational complexity in reasonable limits.
This work tries to close the gap a little by applying results from the biomechanical and
biomedical communities to a robotics system.
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3 Biomechanics of the Human
Body

The use of EMG signals has been motivated as the main way of information trans-
portation between the human operator and the exoskeleton insection 1.1. This chapter
describes the processes in the human body from the thought inthe brain to the resulting
muscle activations and reflex actions during which EMG signals are generated.

The body functions described in the following sections are valid only for healthy
persons, and only aspects which are directly related to thiswork and the implemented
human body model are described. The level of detail is limited to the basics but ex-
plains the origin of modelled properties and gives insight into the simplifications that
have been applied during development of the model. All descriptions refer to skeletal
muscles. More detailed descriptions can be found in [KSea95,SD88,Jea90].

The following section 3.1 describes the way a thought or reflex initiates a motion, to
give the reader an overview of the neural information flow in the body and the resulting
motion. Section 3.2 focuses on muscle properties and how force is generated in a
more detailed way. Section 3.3 describes origin and characteristics of EMG signals.
Section 3.4 gives some remarks on modeling in the light of this particular application.

3.1 From the Brain to the Muscles

The motor system of the human body is responsible for transferring neural signals to
physical energy: A thought initiates a motion. But not only conscious brain activity,
but also input from the sensor system of the human body can initiate movements.
During reflexes physical energy is converted into neural signals which in turn stimulate
muscles without going through the brain.

According to [KSea95], movements can be divided into three categories depending
on the influence of voluntary control:

• Reflex responsesare the simplest form of motor behavior. Examples are the
withdrawal of the hand from a hot object, the knee jerk or swallowing. Reflexes
are rapid, stereotyped responses and can be performed without any voluntary
control, although they can be modified with conscious effort.

• Rhythmic motor patterns are typically initiated and terminated voluntarily, but
in-between no conscious effort to maintain the repetitive movement is necessary,
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although it can be adapted to certain circumstances. Examples for this type of
movement are walking, running, or swimming.

• Voluntary movementsare the most complex movements, like playing an instru-
ment and driving a car. Those movements are goal directed andcan be improved
with practice. The better those movements have been learned, the less conscious
effort they require.

According to the different levels of voluntary influence on amovement, the human
motor system can be divided into three levels of motor control, as shown in figure 3.1:
the spinal cord, thebrain stemand themotor cortex. Those levels are organized hi-
erarchical and in parallel with the spinal cord being the lowest level: Reflexes and
rhythmic motor patterns have local circuits which are optimized for quick responses.
The brain stem is the next level of control and is divided intotwo parts: (1) the medial
systems which are mainly responsible for controlling the body posture by integrating
information from the eyes and the balance system, (2) the lateral systems, which are
connected to distal muscles of the limbs, like arms and hands, to control goal-directed
movements. The motor cortex is the highest level of control with the highest layer of
abstraction. It is responsible for coordinating and planning complex movements. To
perform this, it is connected to the cerebellum and the basalganglia. During a vol-
untary movement, the cerebellum compares the actual movement through responses
from the sensory systems to the desired movement, and corrects the movement if nec-
essary. The output to the cerebral cortex is excitatory, initiating movements. The basal
ganglia, on the other hand, works inhibitory on the cerebralcortex, surpressing certain
movements, to allow others to be performed. The basal ganglia and the cerebellum are
connected to the motor cortex via the thalamus, a relay station.

The hierarchical structure of the control system ensures that simpler movements can
be performed without conscious effort. But through the additional parallel neural path-
ways it is possible for higher levels to modulate lower levels to adapt the movement
to special circumstances, for example, changing the stridelength or stepping over an
obstacle.

In addition to the neural commands from the higher levels, every level is fed with
sensory information that is needed for appropriate control. There is a permanent flow
of information about position and orientation of the body limbs, the degree of muscle
contraction, and information about events in the environment through the skin or eyes.

All pathways from the different control levels are connected in complex networks of
interneurons in the spinal cord. They are ultimately converging into common pathways
that lead to the motor neurons which innervate the muscles. Those motor neurons are
situated in the spinal cord and connect to the skeletal muscles by axons (nerve fibers).

The signals (action potentials) sent over the axons to the muscles lead to contraction
of muscle fibers, shortening the muscle. Since every muscle is connected to the human
skeleton at at least two points spanning one or more joints, the shortening of the muscle
creates a torque in those joints. If the torque is large enough, a motion is performed.
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Figure 3.1: Motor system of the human body. The motor areas of the cerebral cortex
are responsible for complex voluntary movements, passing control signals to the lower
levels of the hierarchy: the brain stem and spinal cord. There, rhythmic movement
patterns and reflex responses are generated, which can be modulated from the higher
levels through the parallel pathways. The cerebellum is responsible for correcting the
current movement to resemble the desired movement (refer tothe text for details).
Adapted from [KSea95].

Details on the control of human walking is still a matter of current research. A recent
review on this topic can be found, for example, in [Nie03,KSea95].

3.2 Muscle Physiology

The purpose of muscles is to generate force between two end points either actively
through contraction or passively through their resistanceto stretch.

The muscle belly is connected to the bones or other muscles atpoints calledorigin1

and insertion2 by tendons. Muscles and tendon are surrounded by connectivetissue
holding them together and separating them from their neighborhood. They also allow
the muscle to slide inside this hull during movement, and guide it along a predefined
path preventing displacement to the side [Uhl96].

The muscle belly itself is composed of muscle fibers that are grouped intofasci-
cles(muscle fiber bundles) as shown in figure 3.2. Those fibers can have a length of
approximately 15cm and a diameter between 10µm and 100µm in human.

Each fiber is composed of so-called myofibrils: tightly packed filaments that go
from one end of the muscle to the other. Those myofibrils are the contractile elements
of muscle and have a diameter of approximately 1µm.

Each myofibril is in turn further subdivided into a chain of sarcomeres, the smallest
contractile elements of a muscle. Those sarcomeres have border walls calledz-linesto

1Proximal (closer to the center of the body) point of attachment of the muscle to the bone.
2Distal (farther away from the center of the body) point of attachment of the muscle to the bone.
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which thin strands of actin filaments are attached. The distance between those z-lines
is approximately 2µm to 3µm, depending on the level of contraction of the sarcomere.
Located between those actin filaments are the myosin filaments.

When a muscle is activated, a bio-

Z−lines
I−lines

A−lines

Z−lines

I−lines

A−lines

myofilaments

sarcomere

Muscle

actin filaments actin filaments
myosin filaments Z−membrane (z−lines)Z−membrane (z−lines)

Figure 3.2: Components of the human
muscle: The upper images show the whole
muscle that is composed of muscle fiber
bundles which are arranged in parallel.
Each muscle fiber bundle in turn consists
of muscle fibers, which are composed of a
chain of sarcomeres. During muscle acti-
vation, a biochemical process increases the
overlapping region of the actin and myosin
filaments and pulls the z-membranes closer
together, which results in muscle contrac-
tion (adapted from [Uhl96]).

chemical process lets the actin filaments
glide deeper between the myosin fila-
ments (cross-bridge binding), so that
the overlapping region increases. Since
the actin filaments are attached to the
z-lines, the distance between those
z-lines is decreased. The sarcomere
shortens, and so does the whole mus-
cle. A sarcomere can shorten to about
57% [BD85] of its rest length. It cannot
actively increase its length again. This
can only be achieved through forces
from outside, for example, through con-
traction of antagonist3 muscles.

The force a sarcomere can produce
depends on its length, that is, the dis-
tance between the z-lines: The longer
the sarcomere, the smaller is the over-
lapping region of the actin and myosin
filaments, and the smaller is the result-
ing force. If the sarcomere gets shorter
on the other hand, filaments start to in-
terfere, resulting in a smaller force. In-
between an optimal length exists. Ex-
trapolating this for the whole muscle re-
sults in a force-length relationship that
has a maximum at theoptimal mus-
cle fiber lengthand declines in both
directions as shown in figure 3.3, left
side [GHJ66,DLH+90].

At a length above the optimal mus-
cle fiber length, a passive force appears
and steadily increases with length. This
force is a result of the elasticity of my-
ofibrils [Zaj89].

Furthermore it has been observed, that the optimal muscle fiber length for the
active force-length curve decreases with an increase of muscle activation by about
15% [BLMB04].

The muscle force is also influenced by the change of length perunit of time (muscle
3Antagonists act in opposition of the agonist muscle, which mainly creates the movement.
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Figure 3.3: Muscle force relationships: (left) muscle force as a function of the
length of the muscle fibers, normalized to optimum muscle fiber length, (right) muscle
force depends on the muscle velocity, normalized to maximummuscle velocity (data
from [DLH+90]).

velocity). During lengthening of the muscle, the sarcomereforce is increased mainly
due to stretch of elastic elements. During shortening on theother hand, the sarcomere
force decreases to zero in a hyperbolic fashion. This is the case because the filament
movement of actin and myosin that leads to contraction is a repeated process of bind-
ing and detachment with a limited frequency: the cross-bridge cycling. If the muscle
shortens very fast (negative velocity, for example, due to external forces) the cross-
bridge cycling is not fast enough to produce any force while shortening the muscle.
Looking at the muscle as a whole, this introduces a force-velocity relationship of the
muscle as shown in figure 3.3, right side. It is usually normalized to the maximum con-
traction velocity of muscle, which can be approximated through ten times the optimal
muscle fiber length per second [Zaj89]. More details of the origin of the force-length
and force-velocity relationships can be found, for example, in [Win90a].

Depending on the task the muscle is mainly involved in, thereare differences in the
macroscopic arrangement of muscle fibers: The more muscle fibers are working in
parallel, the stronger a muscle is. The longer the muscle fiber, the more sarcomeres
are linked in series, and the faster the contraction can be. Given a specific volume for
a skeletal muscle, the arrangement of fascicles is optimized as shown in figure 3.4:
When a large force production is required, the fascicles arearranged in parallel and
at an angle to the direction of pull. This puts more fibers in parallel within the same
volume by sacrificing a larger range of contraction. Those muscles are calledpennate
muscles[Mar98, Uhl96]. The angle between the fascicles and the direction of pull
along the tendon is calledpennation angle. This angle is not fixed but varies with the
contraction of the muscle as depicted in figure 3.4e.

A measure for the strength of the muscle is thephysiological cross-sectional area
(PCA) of a muscle that takes into account the number of sarcomeres in parallel with
the angle of pull of the muscle. According to [MWW83], the relationship between
cross-sectional area of a muscle and its maximum force is linear. The PCA is defined
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Figure 3.4: Illustration of different muscle structures (adapted from[Uhl96]). Fig-
ure e) shows the change of the pennation angle in unipennate muscles through muscle
contraction.

according to [Win90a] as:

PCA=
m· cosφo

ρ · l
(3.1)

with the pennation angle,φo, the mass of the muscle fibers,m, the density of the mus-
cles,ρ ≈ 1.056g/cm3, and the length of the muscles,l . %PCA is the cross-sectional
area as a percentage of the total cross-sectional area of allmuscles crossing a particular
joint. Table 3.1 shows details for some muscles crossing theknee joint.

Muscle PCA [cm2] φo [◦] %PCA FMax[N]
Gastrocnemius 30.0 15 19 1605
Biceps Femoris (small) 6.8∗ 23 3 400
Biceps Femoris (long) 15.8 0 7 720
Semitendinosus 4.4 0 3 330
Semimembranosus 22.6∗ 15 10 1030
Vastus Lateralis 30.0 5 20 1870
Vastus Medialis 26.0 5 15 1295
Vastus Intermedius 25.0 5 13 1235
Rectus Femoris 12.5 5 8 780
Sartorius 1.9 0 1 105
Gracilis 7.5∗ 3 1 110

Table 3.1: Examples of muscle parameters with physiological cross-sectional area,
PCA, pennation angle,φo, and maximum force,FMax. Data was taken from [Win90a],
except values marked with∗, which have been derived from their %PCA-values.

The motor system can measure the actual muscle length and velocity through muscle
spindles which are integrated in the muscles and tendons. They are linked to the spinal
cord by nerve fibers to give feedback to the motor system [Uhl96,KSea95].
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3.3 Muscle Activation and Electromyography

Muscle contraction is a response to signals originating from the so calledα-motor
neurons sitting in the spinal cord or brain stem. Those neurons create an electrical
impulse that travels along axons with a velocity of 50–90m/s[BD85] to the motor
endplates (neuromuscular junctions) sitting on top of the muscle fibers, usually near
the middle or proximal to the middle [BD85]. Axons branch before they reach the
fibers, so that everyα-motor neuron can be connected to a number of muscle fibers
ranging from as low as 10 for eye muscles, about 100 for muscles in the hand, and
to about 2000 in leg muscles [KSea95]. The lower the number ofinnervated muscle
fibers, the more fine grained the control of the muscle activation can be performed by
the nervous system. But every muscle fiber is only controlledby a singleα-motor
neuron.

Theα-motor neuron, together with the axon, motor endplate, and the muscle fibers
that belong to this motor neuron are called amotor unit[BD85].

The action potential that is transmitted to the motor endplates initiates a biochemical
process inside the junction to the muscle fiber, the synapse,and in the synaptic cleft
between the synapse and the muscle fiber membrane (postsynaptic membrane). If the
resulting depolarization at the postsynaptic membrane exceeds a certain threshold, a
single muscle fiber action potential is generated that travels along the muscle fiber with
a velocity of 3–6m/s [BD85] to excite all sarcomeres. This leads to contraction of the
sarcomeres and to a single twitch. To achieve alonger periodof contraction, a series
of action potentials has to be generated by the motor neuron:a motor unit action po-
tential train. Since a motor unit can perform only an all-or-nothing activation of the
muscle fiber (the strength of a twitch cannot be modulated), thestrengthof contraction
depends on the number of recruited motor units, that is, the number of motor neu-
rons that produce an action potential at the same time. Typically, weaker motor units,
innervating less muscle fibers, are recruited first if progressively increasing force is
required [KSea95]. In general, motor units are firing in a random pattern and are not
synchronized.

Studies on single motor units revealed that one stimulationpulse creates a single
twitch response from the muscle. With increasing frequencyof those pulses, the
twitches start to merge and the force production of the muscle becomes continuous and
increases. When the stimulation frequency is further increased, the twitches come clos-
er to a permanent maximum contraction of the muscle at which point no further force
can be generated. If this contraction is performed voluntary (no reflex, no spasm) it is
calledmaximum voluntary contraction. The relationship between neural activation and
force production is described of being linear, exponentialor logarithmic, depending on
the muscle. Results of various investigations can be found in [BD85,MB03,PNM96].

During the depolarization of the postsynaptic membrane, ion movement causes an
electromagnetic field in the vicinity of the muscle fibers that overlays with fields of
fibers from other motor units which are intermingled within the muscle. The resulting
sum of all fields is called the electromyographic signal of the motor units and can be
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Figure 3.5: Example of a raw EMG signal as delivered by a surface electrode.
The electrode has an in-built bandpass of 20–450Hz and an amplifier with a gain of
1000V/V. Diagram (a) shows a series of muscle contractions,diagram (b) shows the
magnification of an interval of the same data.

directly measured invasively with needle electrodes or on top of the skin with surface
electrodes. Example data is shown in figure 3.5.

Unfortunately, measured EMG signals are not always exclusively from the muscle
below the electrode. Due to the conductivity of tissue and skin, signals from neighbor-
ing muscles can interfere with the muscle under observation.

On their way to the electrodes EMG signals are modified through filtering charac-
teristics of the tissue it passes and, in case of surface electrodes, the characteristics of
the connection between the skin and the electrode. Those details will not be addressed
here. An introduction to this topic can be found in [BD85].

The time between the emission and detection of the EMG signalcan be neglect-
ed in the context of this work. But there is also a time betweenemission and force
production. This time, called theelectromechanical delay, is reported to be about 50–
80ms [CK79,ZLMF95,VMIS90], mainly due to low muscle fiber conduction velocity
and the chemical processes which lead to contraction. It allows the signal evaluation
process to startbefore the force production begins, reducing the latency of control
systems coupled to EMG signals.

Furthermore, muscle fatigue has an effect on the relationship between EMG signals
and muscle forces: The EMG spectrum shifts to lower frequencies and the amplitude
measured by surface electrodes increases. The motor units start to fire more synchro-
nized, resulting in a visible tremor of tension [Win90a]. Effects of muscle fatigue
are not taken into account in this work. An analysis of these effects can be found
in [Seg03].

In the context of this work, EMG signals are always related tosurfaceEMG signals.
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3.4 Remarks

3.4 Remarks

In this work, muscle forces are estimated from the recorded EMG signals to analyze
the desired action of the operator. For this, two main aspects have to be considered:
First, a proper biomechanical model of the human body has to be developed. This
model has to incorporate major properties of the muscles to deliver a good estimation
of muscle forces. It does not need to be too detailed. Most complex muscle models
have been developed by observation of the behavior of singlemuscles from animals
or human cadavers, and are not used with multiple muscle systems. When perform-
ing experiments with the operator and the exoskeleton, manyother factors influence
the quality of the results, like attachment of the exoskeleton to the human, mechanical
construction of the actuation and so on. Creating an overly complex model will not im-
prove the overall system behavior very much. Inclusion of additional properties should
always be considered in the context of the whole work and the potential improvements
of the overall system behavior.

Second, recorded EMG signals depend on a variety of factors,like sweat on the
skin, blood circulation and so on. Those factors unfortunately vary from day-to-day.
If muscle force is to be derived from EMG signals, the EMG to muscle activation
relationship has to be determined for every experimental session anew.

The implemented human body model is described as part of the control system in
the following chapter 4, and the calibration of all model parameters is presented in
chapter 5.
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4 Intention Analysis and Support
Computation

This chapter describes the control system of the exoskeleton. It is responsible for
determination of the desired action of the operator and generating the support with the
actuation of the exoskeleton.

In general, this system is subdivided into three distinct parts: The signal evaluation,
which is responsible for analyzing the intended movement ofthe operator, the compu-
tation of a suitable support action, and the execution of this action through a control
loop that commands the actuation of the exoskeleton, as shown in figure 4.1.

Section 4.1 describes initial considerations, and a definition of the requirements
of the control system. Section 4.2 gives an overview of the whole control system,
section 4.3 describes the evaluation of the EMG signals to estimate the operator’s
muscle forces, section 4.4 explains the appropriate determination of support, and in
section 4.5 the low-level controller connected to the actuator is presented. The control
scheme has been published in [FH06].

The presentation of the system is orientated towards the legexoskeleton that was
developed in this work and is presented in chapter 6 so that appropriate graphic de-
scriptions can be given. But the algorithms are generic and can be applied to almost
any part of the human body and to a wide range of exoskeletons.

4.1 Preliminary Considerations

Computation of the support action and the subsequent control of the force contributed
by the actuation of the exoskeleton strongly depends on the output of the intention
detection algorithm. It can be a fuzzy "idea" of the direction of movement, an accurate
estimation of the movement within the next timestep, a complete movement descrip-
tion like "climb a stair", or the desired muscle force of the operator which he or she
cannot generate alone.

From our point of view it is desirable to allow the operator full control over the exo-
skeleton at every time. This excludes algorithms which identify complete movements
and replay pre-defined trajectories. While the latter can beuseful during rehabilitation
to teach the subject correct gait patterns, healthy operators can benefit from a system
allowing more control: Characteristics of the movement canbe modulated, for ex-
ample, the stride-length, and walking in a natural environment with steps, stairs and
obstacles can be performed more easily. It is also expected that the transitions between
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Support
Calculation

EMG Signals

Motion
Controller

Supporting Action

Control Signals

Control Feedback

Action
Intended

Analyzer

Kinematic
Information

Figure 4.1: Basic concept of the interface and controller structure: The EMG signals
are recorded from relevant muscles and are analyzed together with kinematic infor-
mation from the exoskeleton. Output of the analyzation is the intended action of the
operator, for which a suitable support is computed. This support is passed to the motion
controller which is responsible for the execution with the actuation of the exoskeleton.

different tasks is performed more natural, for example, between standing-up and walk-
ing or walking and climbing a stair, and they can appear at arbitrary points in time. It
is also more convenient for the first experiments, performedwith healthy operators, to
give less control to the machine and more control to the humanfor safety reasons.

In this work, two of the above mentioned approaches are explored: In the rest of
this chapter an algorithm is presented that estimates the operator’s own force contri-
bution to a movement, and adds a certain amount of extra forceto it. By utilizing a
linear relationship between the joint torque produced by the operator’s muscles and the
torque created by the actuation, it is hoped that the human locomotor system can adapt
easily to this external influence. In section 8.1 an algorithm is presented that predicts
the desired movement of the operator for the next timestep with a dynamic rigid body
model.

Both algorithms are based upon evaluation of EMG signals emitted from the mus-
cles during their activation. The complexity of the analysis and support calculation
has to be so low, that the support can be calculated continuously and very fast, but
not necessarily in real-time. The loop which determines thesupport should run with
a frequency of at least 100Hz. It is of no use to develop a detailed, complex, and ac-
curate model that produces results with an intolerable delay. This delay could result
from computational effort as well as from the structure of the signal evaluation that
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4.2 Basic Concept

has to wait for certain data to be recorded. Furthermore, no overall optimization can
be performed afterwards to calculate the "optimal" estimation for every point in time.
From the findings of research groups specialized in those fields results have been uti-
lized. From the wealth of available data and models, a sensible and practical level of
abstraction with a small set of parameters has been chosen. While some parameters
can be taken from literature, some can be estimated. But a certain number remains and
has to be calibrated for every subject. To obtain a system that can be practical used
to perform experiments, the number of those parameters has to be kept in reasonable
limits.

Unfortunately, some of those parameters are subject to change between experimen-
tal sessions. It should be possible to calibrate them easily. To avoid inconsistencies of
computation between the calibration setup and the experiments with force support, it is
best if the calibration is performed with the exoskeleton system itself, and without any
external devices. But it has to be pointed out that this comfort is traded for accuracy of
the calibration and the kind of parameters that can be determined. Due to the limited
capabilities of the sensors mounted on the exoskeleton, notmany different reference
values can be accurately obtained to calibrate with. The calibration is presented in
chapter 5.

4.2 Basic Concept

The concept of the system is to amplify the muscle forces the human operator is pro-
ducing. Since the human is inside the control loop, he or she can regulate the muscle
activations to perform the desired movement while receiving the support. Through
feedback in the body he or she can take into account the external support, and reduce
the own force contribution to the movement when the actuatorgives support. This
requires an operator that is able to coordinate muscle activations in accordance with
the external support. Higher amplifications demand lower latencies of the system to
remain stable and the capability of the operator to adapt hisor her normal movement
patterns to the modified circumstances.

The concept of the control system is shown in figure 4.2: It estimates the current
joint torque contribution from the EMG signals of the operator through a simplified
body model. The desired supporting torque is derived from the operator’s own torque
contribution and a given support ratio. The current torque contributed by the exo-
skeleton is calculated by a sensor integrated into the actuator and a proper model. The
difference of the desired support torque and the current support torque forms the torque
error that is passed to the torque controller with connection to the actuation.

The evaluation is performed continuously. No pre-defined trajectories are applied.
All sensor data are recorded with 1kHz, but downsampled and evaluated with approx-
imately 100Hz, allowing spontaneous movements. The low-level motion control loop
runs at a frequency of 1kHz.

This control scheme has no knowledge about the movement thatwill result from
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Current Joint 
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Figure 4.2: Control structure of the system: The EMG signals are evaluated by a
body model resulting in an estimate of the operator’s torquecontribution. The support
torque is computed from the operator’s contribution, forming the target joint torque.
This torque is compared to the current torque produced by theactuator. The resulting
error is evaluated by the controller and appropriate control signals are generated.

the combined effort of the operator and the actuation. The simplicity of the general
concept is traded for the possibility to include algorithmswhich observe the global
behavior to control postural stability or suppress inappropriate movements. On the
other hand it is a very fault-tolerant mechanism and gives the able-bodied operator a
high degree of freedom and control.

4.3 Human Body Model

The human body model is responsible for estimating the torque of the operator from
the EMG signals of all observed muscles as shown in figure 4.2.It does not take into
account any movements resulting from the activation of the muscles.

Fortunately, a lot of work has been undertaken by other groups to model the human
body, as summarized in chapter 2. An overview of properties and models that also
includes the properties taken into account in this work can be found in [BLMB04].

In the following, the model is described as implemented. Theexclusion of some
well-known properties is explained, either because necessary parameters cannot be
determined during calibration, or their effect is neglectable in the considered applica-
tion. Properties of the human body thatare included in the model have been introduced
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4.3 Human Body Model

with their origin in chapter 3. The effect of inclusion of those properties is analyzed
during the experiments in chapter 7, justifying the complexity of the model.

The following sections describe the signal evaluation frominside to outside: from
muscle details to the resulting torque contribution of a muscle, before the summation
over all muscles is performed. The model is explained for thetorque computation of a
single joint, but taking into account multijoint muscles.

EMG Signal to Muscle Activation

First of all, the muscle activationa(u) as a function of the postprocessed EMG signal,
u, has to be determined. This activation is a dimensionless quantity 0<= a(u) <= 1
that reflects the activation of the muscle relative to the maximum voluntary contraction
(MVC) of a muscle. It is obtained from the EMG signal, which isa measure for the
electrical activity in muscle leading to contraction, in the following way:

1. From the time-discrete raw EMG signale(t), which is a function of timet, the
moving average ¯e(t) of the signal is subtracted, eliminating any offset from the
sensor setup.

2. The offset-corrected signal is rectified.

3. The rectified signal is lowpass-filtered to form the activation envelope,u(t).

4. The offset of the postprocessed EMG,uo, which is measured when the muscle
is relaxed.

This results in the following EMG postprocessing:

u(t) = L(|e(t)− ē(t)|)−uo (4.1)

whereL is the low-pass filtering function, in our case a second orderButterworth low-
pass filter, with a cut-off frequency of 1.6Hz. Common valuesare in the range of
4Hz to 10Hz [BLMB04], but experiments with the actuation have shown that a lower
frequency improves the system behavior (refer to experiments in section 7.2.3). This
lowpass-filtering simulates all different aspects of the lowpass-filtering in the human
muscle: from the chemical processes on the way to and within the muscle fibers, the
electrical transmission delays, to muscle and tendon viscoelasticities. An example of
a raw EMG signal and the output of the filtering can be seen in figure 4.3.

In human body, the activation of a muscle does not happen instantaneously. It takes
some time until the muscle force is generated and ceases. In literature this is modelled
as themuscle activation dynamics[ZW90, MB03] and called theelectromechanical
delay [CK79, ZLMF95, VMIS90], which is not taken into account here. Some dis-
placement in time between the EMG signal and the force valuescan be observed, but
in our experimental setup it is hard to verify where this delay comes from, and the
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Figure 4.3: Raw and postprocessed EMG signal.

measurements are not accurate enough to calibrate requiredparameters. But it may
have an effect upon the performance of the system.

As was explained in section 3.3, the EMG signal to force relationship is reported
to be linear, exponential or logarithmic. Two transfer functions have been utilized in
this work to investigate the performance of the torque prediction. The first function is
based on [PNM96], using an exponential relationship:

aexp(u) =
eAuR−1

−1
eA−1

(4.2)

whereu is the postprocessed EMG value,Ran estimated maximum1 of the signalu(t),
andA, a non-linear shape factor defining the curvature of the function, bound to an
interval of−5 < A < 0.

ForA→ 0 the function approximates a linear relationship.
The second activation function has been suggested in [MB03], and is slightly mod-

ified here. It consists of two portions: For EMG values below acertain threshold,u0,
with the corresponding activation,a0, the function is approximated with a logarithmic
function, whereas the other portion is approximated with a linear relationship:

apw(u) =

{

a0
ln(A+1) ln(A u

u0
+1) if u < u0

m(u−u0)+a0 otherwise
(4.3)

with u0 = 0.3R

where(u0,a0) defines the point of transition between the two portions of the function
in the EMG signal / activation space,A defines the shape of the logarithmic portion,
andm the slope of the linear portion.R is the estimated maximum of the postpro-

1Since this function is applied online, a definite maximum cannot be determined. In contrast to the
original definition,u is not normalized in advance.
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cessed EMG valueu. The function is modified in contrast to the original suggestion
in [MB03] in such a way that the two pieces of the function are directly related through
the parameters. In the original work the pieces had independent parameters which have
been optimized to create a continuously differentiable function. This is not an impor-
tant aspect in our work, and leads to an overall more inaccurate curve fitting with our
experimental setup.

Following that, the parameters of the EMG signal to muscle activation relationship
areA,R, orA,m,a0,R, respectively, for every muscle, depending on the activation func-
tion. They depend very much on the condition of the subject and electrode placement,
and have to be calibrated for every experimental session andfor every muscle.

In the following text, the activation functiona(u) is a placeholder for one of the two
functions defined above, to abstract from the underlying activation function.

Muscle Activation to Muscle Force

Once we have obtained the activation of the muscle, we can compute the resulting
force using a simplified Hill-type muscle model. Hill-type muscle models abstract
from internal processes of muscle in favor of a perspective from "outside": the muscle
is modelled by observation of the behavior through a contractile element, and pas-
sive dampers and springs. Since the original paper by Hill [Hil38] was presented,
many derivatives of the model have been published incorporating recent findings. An
overview of modern Hill-type models can be found in [Win90b], and parameters of
those models are readily available in literature.

In this work, a simplified Hill-type muscle model is explained, omitting some as-
pects which are not required in this context. This model is shown in figure 4.4. It
consists of two elements: a contractile element producing the active muscle force,Fm

A ,
through contraction, and a parallel elastic element that produces the passive force,Fm

P ,
when the muscle is stretched:

Fm = Fm
A +Fm

P (4.4)

The force of the contractile element is calculated by the product of the muscle ac-
tivation,a(u), and the maximum isometric force2 at optimal muscle fiber length,Fm

o ,
and the active force-length function,fA(l̃m):

Fm
A = fA(l̃m)Fm

o a(u) (4.5)

with l̃m =
lm

lm
o

, (4.6)

where l̃m is the normalized muscle fiber length, which is the muscle fiber length,

2Force that is produced under isometric conditions, that is,no length change of the muscle occurs.
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Figure 4.4: Schematic of the muscle model: The contractile element (CE)is creating
the active force,Fm

A , through sarcomere shortening. The parallel element (PE) repre-
sents fiber and tissue properties resisting the stretching of the muscle through a passive
force,Fm

P . The force of the muscle,Fm, is the sum of the active and passive forces and
acts at an angle to the direction of pull: The pennation angleφ . The resulting force
along the tendon is the musculotendinous force,Fmt.

lm, divided by the optimal muscle fiber length,lm
o . fA(l̃m) describes the ability of the

muscle to produce force at a certain muscle fiber length (refer to figure 3.3).
In literature it is reported that the optimal muscle fiber length changes with the level

of activation [LB03,BLMB04], which is an important fact, asthe optimal muscle fiber
length is a crucial parameter of the muscle model. Nevertheless, this effect is neglected
here to keep the number of parameters low. Further experiments have to be performed
to investigate if inclusion of this property would significantly improve the behavior of
the system.

The passive force is calculated as a product of the maximum isometric force,Fm
o ,

and the normalized passive force-length curve,fP:

Fm
P = fP(l̃m)Fm

o (4.7)

fA(l̃m) and fP(l̃m) can be found in literature [DLH+90] and are shown in figure 3.3
(left side).

The force-velocity relationship of a muscle, as shown in figure 3.3 (right side),
is omitted since the movements considered in this application are rather slow, and
the maximum muscle velocity that is used for normalization of the muscle velocity
is reported to be about 10lm

o /s [Zaj89]. The effect of including the relationship can
be estimated by looking up the muscle fiber velocity for walking from diagrams 6.3
and 4.5, and retrieving values with the normalized muscle velocity from the force-
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velocity curve in diagram 3.3. If desired, the force-velocity relationship as a function
of the normalized muscle velocity can be included in the product of the active muscle
force in equation 4.5. The omission leads to a slight overestimation of the active mus-
cle force when the muscle shortens and an underestimation when the muscle lengthens.
If handling of faster movements is desired it can be integrated.

Since fA, fP, and estimations oflm
o are taken from literature, the subject-dependent

parameters of this model isFm
o for every muscle. It could be argued that the whole

muscle-tendon model has to be scaled according to the size ofthe operator, but this is
not performed. Most of this influence is compensated throughthe calibration of other
parameters.

To be able to calculatẽlm, the current muscle fiber length,lm, has to be calculated.
This requires inclusion of a complex musculotendinous model, but is necessary, since
the force-length property is very important.

Initial experiments have tried to establish a force-angle relationship that implicitly
takes into account the force-length relationship and the muscle length as a function
of the joint angle. This relationship was calibrated with a second order polynomial.
Unfortunately, the predictability of the model was small since the model was fitted
strongly to the data. With inclusion of the following model,the number of parameters
that are required to be optimizedper muscleare reduced from three to one compared
to using the polynomial. Less data has to be recorded to perform the calibration, since
a priori knowledge is included that replaces two unknown parameters.

This musculotendinous model is a subset of the model published in [DLH+90]
which is in part a consistent collection of data from other sources complemented by
muscle and joint models describing the muscle paths wrapping around bones at certain
joint angles where required. The model data can be found in appendix A.

The length of a particular musculotendinous complex (muscle and tendon together,
that is, from the point of origin to the point of insertion) isdefined by:

lmt =
n−2

∑
i=0

‖Pi+1−Pi‖ (4.8)

wherePi = (xi ,yi ,zi,0)T are the waypoints of the muscle-tendon path. All way-
points are connected to a condition,ci , that checks the joint angles,ak, being in certain
intervals:

ci =

{

1 if ∀k : 0≤ k < J ⇒ α low
k,i ≤ αk ≤ αhigh

k,i

0 otherwise
(4.9)

with J being the number of modelled joints.α low
k,i andαhigh

k,i are the lower and upper
boundaries of the joint angle intervals belonging to waypoint i and jointk.
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The waypointPi is inserted into the path if conditionci = 1. Some boundaries are
chosen in such a way that the condition is always 1.

Pi are the results of a transformation of waypoint coordinates, P̂i , of the body seg-
ment coordinate systems (pelvis, thigh, shank, patella) into the pelvis coordinate sys-
tem with

Pi = M i(α0, . . . ,αJ−1)P̂i (4.10)

whereM i(α0, . . . ,αJ−1) is a 4×4-transformation matrix as a function of the joint
angles,αk, with 0≤ k < J of the respective body segments to which the waypoints are
connected. It takes into account rotation and sliding movements of the individual seg-
ments during joint movement and transforms the coordinatesinto the pelvis coordinate
system.

The relationship between the length of the musculotendinous complex,lmt, the mus-
cle fiber length,lm, and tendon length,l t , is given by:

lmt = l t + lmcosφ , (4.11)

whereφ is the current pennation angle (refer to figure 4.4). Obviously, if the pen-
nation angle would be neglected, the expression of the muscle fiber length simplifies
to

l̂m = lmt− l t . (4.12)

But the influence of the pennation angle on the model output has to be investigated
and cannot be neglected in general.

The pennation angle changes with the muscle length with respect to the optimal fiber
length and can be approximated according to [SW91] by

φ = arctan

(

lm
o sinφo

lm
o cosφo−δ

)

, (4.13)

whereδ is the length change of the musculotendinous complex, andφo the pennation
angle at optimal fiber length.

According to [Zaj89] the tendon is rather stiff: The strain is only about 3% of the ten-
don length for maximum muscle force. It is neglected here so that the length change,
δ , relates the current pennation angle to the pennation angleat optimal fiber length,
φo, and muscle fiber length,lm, through
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lmcosφ = lm
o cosφo−δ (4.14)

Solving equation 4.13 for sinφ , and replacing cosφ by the expression resulting from
rearranging equation 4.14 for cosφ , yields the current pennation angle as a function of
the muscle fiber length,

φ = arcsin

(

lm
o sinφo

lm

)

. (4.15)

Rearranging equations 4.11 and 4.15 yields

sinφ =
lm
o sinφo

lm and cosφ =
lmt− l t

lm (4.16)

with

sin2φ +cos2 φ = 1 (4.17)

it follows for the length of the muscle fibers,lm:

lm =
√

(lm
o sinφo)2+(lmt− l t)2 (4.18)

which is not depending on the current pennation angle anymore, but only on the
pennation angle at optimal fiber length,φo [Onk07].

Unfortunately this equation contains the length of the tendon, l t , which is not known
exactly. But since the tendon strain is omitted in our model,l t is approximated by the
tendon slack lengthl ts:

l t ≈ l ts (4.19)

This is the length of the tendon without any external forces applied to it. Estimations
of l ts can be found in e.g. [DLH+90]. More complex algorithms approximate the mus-
cle length through numerical integration of the muscle fibervelocity starting from an
estimated value [LB03].

In literature it is pointed out that the model is very sensitive to the tendon slack
length of a muscle which varies from subject to subject. For this reason a tendon slack
length scale,st , is calibrated:
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l ts = st l̂ ts, (4.20)

wherel̂ ts is the tendon slack length from literature.
We bound the scale during optimization to the interval[0.85,1.25] to allow differ-

ences between subjects. The optimal muscle fiber length is not optimized to reduce
the number of parameters.

We have taken values forlm
o , φo, andl̂ ts from [DLH+90]. The remaining parameters

form an additional set of six subject-dependent parameters, st
i , one for every muscle.

Muscle Force to Joint Torque

In the previous section the calculation of the force output of individual muscles,Fm,
is described. To compute the tendon force (force of the musculotendinous unit),Fmt,
that is actually pulling at the bones, the pennation angle,φ , from equation 4.15 is taken
into account:

Fmt = Fmcosφ (4.21)

To compute the torque contribution of each muscle, the moment armr(α) as a func-
tion of the joint angle,α, has to be determined. This can be performed with the tendon
displacement method described in [ATHC84], based on the principle of virtual work:

r(α) =
∂ lmt(α)

∂α
(4.22)

Computation of the length of the musculotendinous unit,lmt, is described in equa-
tion 4.8. If muscles are crossing more than one joint, the moment arm can depend on
the angles of all joints it crosses. But in our case, due to thegeometric arrangement of
skeleton and muscles around the knee in the human body, the influence of the remote
joints on the moment arm is small and can be neglected. As can be seen for the knee
joint in figure 4.5, the length of the musculotendinous unit changes almost linearly
with the knee angle, resulting in an almost constant moment arm. The values used for
the moment arms are given in table A.1.

The torque contribution of musclei in a joint is calculated by:

Ti = r iF
mt
i (4.23)

wherer i is the approximated constant moment arm of thei-th muscle andFmt
i the

force of thei-th musculotendinous unit.
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Figure 4.5: Example of the knee joint: The length of the musculotendinous units
plotted over the knee angle. 0◦ means full extension of the knee, negative angles
indicate knee flexion. The hip is assumed to be at 0◦ (straight).

The total joint torque produced by all muscles is the sum of the individual contribu-
tions,

T =
N−1

∑
i=0

Ti (4.24)

whereN is the number of modelled muscles spanning the joint andTi the torque
contribution of thei-th musculotendinous unit as of equation 4.23.

Since not all muscles responsible for joint flexion and extension can be measured
and due to the simplifications described above, torqueT is only a rough estimation of
the actual joint torque.

A summary of the computation and all parameters are given in appendix A.

4.4 Determination of Support

As previously mentioned, the exoskeleton is used as a force amplifier. That means, it
does not have an explicit knowledge about the overall movement that is intended by the
operator, and cannot predict the joint trajectories. Although the muscle activations are
known to the system, the movement that will result is not, andcannot be determined
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in advance, due to lack of information about the configuration of the human body and
contact with the environment.

The operator is in charge of maintaining stability and performing the desired move-
ment by appropriately activating his or her muscles.

To let the system act in a predictable manner to simplify the usage for the operator,
the supporting torque is derived from the operator’s own torque contribution to the
movement by a linear relationship,

Ts = G ·T (4.25)

whereG is the gain orsupport ratio. For example, a gain ofG = 1.0 means that the
system is adding as much torque to the movement as the operator, and a gain ofG= 0.5
means that the system is adding half of the torque the operator is contributing.

Through utilization of a linear relationship it is hoped that the overall shape of the
muscle activation pattern is changed as little as possible when using the system. It
is desired that only the amplitude of the activation is reduced. This should result in a
short training phase to get used to the behavior of the system. This is also an advantage
when regarding the exoskeleton as a device for rehabilitation: The patient would learn
the correct gait pattern, and no artifical pattern which is only helpful as long as the
exoskeleton is worn.

Further research has to show if other functions have any advantages over this re-
lationship. The gain could be a function of the current stateof the system, as far as
known, to add increased support during slow movements (likegetting up from a chair,
climbing stairs, or carrying heavy load), and low support during faster movements. The
operator could benefit from a more powerful support when possible, but during faster
movements such a support can result in even faster movements, which the operator
might not be able to control anymore.

For some applications, like rehabilitation, the responsibility of maintaining a dy-
namically stable pose cannot be put onto the operator. The system has to take care
of that. Section 8.1 gives details on a different approach, which allows integration of
algorithms controlling postural stability.

4.5 Torque Control Loop

The torque control loop is responsible for generating control signals for the actuation.
The target torque of the controller equals the supporting torque,Ts, defined in equa-
tion 4.25.

The torque controller is a standard P-controller using the difference between the
current actuator torque and the supporting torque as the error value to calculate the
controller outputS:

S= Kp · (Ts−TA) (4.26)
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whereTA is the joint torque currently produced by the actuator, andKp the propor-
tional gain of the controller. The torque controller can runwith a higher frequency
than the EMG signal evaluation, to achieve a better performance. In that case the tar-
get,Ts, is not updated in every iteration. Computation of the actuator torque for the
exoskeleton of this work is described in appendix B.

4.6 Summary of Properties

The general behavior of the system presented here is that of aforce amplifier. The
simplified human body model which is described throughout this chapter is used to
estimate the operator’s own torque contribution to the movement in the actuated joints.
This torque is multiplied with a support ratio and contributed to the movement by the
actuation of the exoskeleton.

Since the support is not performed with a position controller, knowledge of the re-
sulting movement of the cooperation between the operator and the exoskeleton is not
required. While this renders the integration of algorithmsfor controlling postural sta-
bility impossible, it leads to a very robust and reliable system, since a dynamic body
model of the operator and the exoskeleton is not required. The number of model pa-
rameters is reduced significantly, and the number of sensorsto synchronize the system
with the real world is very low. No global pose information isrequired to incorporate
the effect of gravity, which is very difficulty to obtain withsensors mounted on the
exoskeleton alone. Arbitrary contact forces pose no problem for the control system
and are taken into account by the force or torque sensor of theactuation.

The latency of the system between the recording of EMG signals and the system
response is dominated by the lowpass-filter delay dependingon the lowpass cut-off
frequency. The effectiveness of the support action is depending on the parameter of the
controller. Those two parameters may be adapted for certainoperators, applications,
or specific movements to allow a quicker response or smoothermovement. All other
parameters influence the degree of support in relation to theoperator’s own torque
contribution.

All the points mentioned above imply some very useful properties: Given an exo-
skeleton construction that can move as fast as the operator can, the exoskeleton will
never hinder the movement of the operator through passivity, for example by not prop-
erly recognizing a movement. The most passive thing the presented control loop can
command is to evade the leg movement of the operator. It does not matter if this leg
movement is performed through the leg muscles or with support from the hands and
arms of the operator positioning the leg. This behavior occurs if the target torque of
the controller is zero, either by setting the support ratio to zero, or because no recorded
muscles are active. It will not lock and suppress a movement as a position-controlled
system. But as soon as muscle activation is detected, the exoskeleton will contribute to
the movement. If the parameters of the model are determined very badly, the support
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will not be linear in every joint configuration, as desired. Only during cocontraction3

of the muscles where the resulting torque produced by the muscles is low (most of the
opposing muscle forces cancel out, and the joint stiffness is increased) the exoskeleton
might hinder the movement slightly, because the summation of the agonist and antag-
onist torques might yield a torque with a different sign thanthe true muscle torque.
On the other hand the most active thing the exoskeleton can perform is to contribute
more than linearly to the movement, because of bad model parameters. For a specific
calibration the maximum deviation from the linear support can be determined.

In contrast to approaches utilizing inverse dynamics to compensate the effect of
gravity regarding a statically stable pose, this approach allows larger support ratios
while still working in cooperation with the operator. Increasing the support for the
systems mentioned before leads to a point where the operatorhas to reverse his or her
muscle activations and work against the exoskeleton to perform a certain movement.
In the presented approach the support ratio is only limited through the reaction delay
of the operator to the resulting movement.

The realization of the control system requires very few sensors: The EMG sensor for
the muscles that should be recorded, a force or torque sensor(depending on the kind of
actuation) to measure the current support, and a sensor to measure the joint angle for
every joint that is crossed by the recorded muscles. Chapter6 presents the exoskeleton
construction and electronics which have been used to investigate the system in real
world experiments. Furthermore, the algorithm scales linearly to the supported joints,
and arbitrary joints can be included and are handled separately.

The described behavior, especially for worst-case scenarios, is very convenient, and
especially welcome for initial experiments and experiments with patients.

The following chapter 5 describes the calibration of the model parameters.

3During cocontraction agonist and antagonist muscles are active at the same time.
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5 Calibration of Parameters

Since the exoskeleton is in close interaction with the humanoperator, there are param-
eters in the system that have to be adapted to the individual operator and to his or her
current body state. This chapter reveals all unknown parameters and explains how they
are determined or optimized.

In work with even more complex biomechanical models, for example, in [LB03] the
calibration algorithm is fed with reference values collected with appropriate sensors
during active and passive exercises with an isokinetic dynamometer, during a straight
run, a crossover-cut and a sidestep. This allowed an accurate calibration of parameters,
and a larger number of parameters to be integrated. In that work, validation of the
biomechanical model was the main focus.

In contrast to that, the calibration in our setup has a severelimitation: The refer-
ence values the calibration can utilize come exclusively from sensors mounted on the
exoskeleton, which are also used for the control algorithm.Those are the joint angle
sensor and the force sensor measuring the current force at the actuator (this could also
be a torque sensor for a different actuator). No sensors connected to a global reference
frame are used. This reduces the accuracy of the reference values.

Since the actuator is attached to the limbs that are connected to the supported joint,
the force sensor can measure the joint torque resulting frommuscle activity directly,
if the actuator is locked and no external forces except gravity are applied to the leg.
Unfortunately, this limits the calibration procedure to isometric tasks. But since the
force-velocity relationship of muscles is neglected, thisis not a drawback.

It could pose a problem if too many parameters of the human operator should be
identified, because the cooperation patterns of the musclesare always similar in this
configuration. It may be impossible for the optimization algorithm to distinguish be-
tween influences of the individual parameters. If differentmovements could be used,
the pattern would change, allowing a distinction between the individual contributions
and between the different parameters of the muscles. On the other hand, if an algorithm
can be found that allows a proper optimization for the selected parameters requiring
only a few isometric contractions, the application of the exoskeleton is simplified by
far, reducing the setup required for the calibration significantly.

Since the much more complex model was proven to yield good results in [LB03],
in terms of biomechanical analysis and not the control of an exoskeleton, we now
have to show that utilizing a subset of properties and some major simplifications still
delivers results that are accurate enough for our application, and that those remaining
parameters can be calibrated with the given sensors to a satisfying accuracy.

In the following sections, the algorithm that is used to optimize all parameters of
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the model is presented. During the description of the calibration some assumptions
are made to be able to perform the calibration. While those simplifications appear
very rough, it has to be kept in mind that the calibration is used for parameters of a
system which controls an exoskeleton. The accuracy of the calibration is not the most
important aspect, especially for the EMG-to-force function. It is rather desirable that
the exoskeleton behaves in a predictable manner so that the operator feels comfortable
and can take advantage of the offered support. This can only be verified in separate ex-
periments. While it is easy to show the performance of the optimization arithmetically,
for the overall system behavior this is a very difficult problem.

The following section 5.1 justifies the selection of certainparameters for optimiza-
tion and explains which parameters can be taken from literature. Section 5.2 describes
the procedure that has to be performed by the operator duringthe calibration to record
useful data, and section 5.3 explains the recognition of significant values and sub-
sequent storage. The stored reference forces are divided among all active muscles as
described in section 5.4, before the geometry calibration is presented in section 5.5 and
the EMG-to-force calibration in section 5.6. A small comment on cocontraction is giv-
en in section 5.7, and the calibration is summarized with itsproperties in section 5.8.
Parts of the calibration algorithm have been published in [FH07,FKRH04b].

5.1 Parameter Selection

In the biomechanical model presented in section 4.3, a number of parameters are used:
The waypoints of the muscle paths, the parameters which build the matrices used for
modeling the geometric relationships between the pelvis, femur, tibia, and patella, pa-
rameters that describe the force-length-curve, the tendonslack lengths, the optimal
muscle fiber lengths, the pennation angles at optimal musclefiber length, the parame-
ters of the EMG-to-force function, and the maximum isometric force at optimal muscle
fiber length. They cannot all be calibrated. A selection has to be applied. The selection
is mostly justified by experiments and results from other research groups, since they
have investigated properties in greater detail, with more accurate measurement setups.
It is of no use to modify parameters that are well-accepted inthe community and have
been validated before without a good reason. One such reasonoccurs, if one parameter
is adapted to incorporate the effect of another, which cannot be identified separately.

Although the dimensions of the human skeleton have been identified in [DLH+90]
for one specific subject, they will not be calibrated in our algorithm. It can be sensible
to scale the data to fit the anatomical properties of the operator more closely. But this
is omitted. Investigations on the change in moment arm due toscaling is performed
in [Onk07]. The linear effect on the moment arm, for example,will be compensated
through optimization of the maximum isometric force, and a certain degree of this
simplification will be compensated through optimization ofthe tendon slack length
scales, which has significant influence and is not well established in literature [LB03].

The force-length-curve is widely used in literature and nottailored to a specific sub-
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ject. It is modulated by the muscle activation in more complex models, which is omit-
ted here. Initial experiments performed by ourselves optimized a force-length curve
with a second order polynomial, resulting in overfitting themodel to the calibration
data. The model prediction was suffering, leading to the conclusion that more accu-
rate and a greater number of reference values had to be acquired to get a more reliable
solution, or the well established curve from the literaturehas to be used.

The optimal muscle fiber length is also a candidate for inclusion in the calibration
process, but is in part compensated by the calibration of thetendon slack length scales.
It is not optimized to reduce the number of parameters. The pennation angle is included
into the model, although the impact on the solution with feasible values is rather small.
Calibrating the pennation angle would not significantly improve the performance, thus
standard values from literature are used [DLH+90,Win90a].

As motivated in section 3.3, parameters of the EMG-to-forcefunction have to be
calibrated whenever the exoskeleton is donned. Since the optimization is not necessar-
ily performed with maximum voluntary contraction every time, the actually performed
maximum isometric force needs to be calibrated.

Summarizing that, the parameters selected for optimization are:

• the shape of the EMG-to-force function,Ai ,

• the expected maximum EMG signal to scale the EMG signals,Ri ,

• the maximum isometric force at optimal muscle fiber length,Fm
o,i ,

• the scale of the tendon slack length,st
i .

The subscripti denotes that all those parameters are required for every muscle.
Those parameters can be subdivided in two categories: The first category is subject-

dependent and requires calibrating only once: the tendon slack length scales,st
i . The

second category contains the parameters that are expected to be changing from one
experimental session to the next. Those are: The EMG-to-force parameters,Ai and
Ri , and the maximum isometric force,Fm

o,i. All other parameters can be found in ap-
pendix A.

5.2 Calibration Setup

As will be described in chapter 6, the exoskeleton developedin this work supports the
thigh muscles during flexion and extension of the knee joint.The calibration setup
is described for this particular exoskeleton so that propergraphic descriptions can be
given. The setup can be easily adapted to other joints, and the algorithm is generic and
can be applied to other configurations as well.

Reference values available for the calibration are the kneeangle and the knee torque
during isometric contractions. The joint angle is not changing because the actuator is
locked. The basic idea is to record the subject’s muscle activation and the resulting
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knee torque during a special calibration procedure. The recorded torque values are
used to calibrate the parameters.

Since only those sensors can be used to observe the system during calibration, ef-
fects that influence the measurements and cannot be recordedand taken into account,
must be minimized in advance. A special setup has to be prepared to limit the external
forces: The operator is sitting on a chair with the exoskeleton leg not having any con-
tact with the environment below the knee joint. The thigh is supported by the chair, the
knee flexed. The actuator is not powered but locked, allowingonly isometric contrac-
tions. When the thigh muscles are relaxed, the force measured by the force sensor is
a result of gravitation acting on the exoskeleton and the embraced leg below the knee
joint.

The operator tries to extend and flex the knee with maximum muscle activation
slowly in both directions a few times. The measured force is now an overlay of all
muscles and the influence of gravitation. The angle remains fixed during this phase.

For the geometry calibration this isometric exercise has tobe performed several
times at different knee angles to measure data for differentmuscle fiber lengths. The
hip angle is held fixed.

When the geometry parameters are available, the EMG-to-force calibration needs
only one trial at an arbitrary knee angle to calibrate the desired parameters.

5.3 Data Collection

The data collection is a continuous process that runs duringthe whole calibration pro-
cedure. From the values that are recorded, those with significance to the calibration
process have to be recognized and stored. It must be ensured that the stored data is a
good representation of all muscle activations with the corresponding force values. Data
of different levels of muscle activity should have the same weight in the optimization
process. Making pauses or time spent with a specific level of muscle activation should
not increase the weight of the data recorded during this phase.

To meet these requirements, the algorithm stores the data intables. For every muscle
a separate table is created for every angle at which a trial isperformed.

Recognition of the initiation of a new isometric exercise ata certain knee angle is
performed as follows: When the measured torque rises above acertain threshold while
the knee angle is changed only within a small interval, due toundesired deformation of
the exoskeleton, a new table for every muscle is allocated inwhich the data is stored.
This is important for the geometry calibration, where everyconfiguration has to be
stored separately. As long as the exercise is detected (the torque remains above the
threshold), data is put into the tables for all muscles at thesame time. Otherwise the
data is discarded.

For a particular musclei data from thek-th isometric trial is stored in the table entry
with indexhi,k, depending on the postprocessed EMG value,ui , by:
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hi,k = ⌊uiSi⌋ (5.1)

whereSi is the interval width of every entry of the table.
The entry contains the current data from all sensors from thecurrent point in time,

which are the postprocessed EMG signalsui with 0≤ i < N andN being the number
of recorded muscles, the joint torque as measured from the sensor integrated into the
actuation,TR, the joint anglesα j with 0≤ j < J andJ being the number of modelled
joints, and the number of former entry updates,nu, of the same entry.

If the entry is empty, the data is stored in the selected entry. Otherwise the data
is averaged on a per-element basis with the data already stored in the table. For this
averaging old data is weighted with the number of former updatesnu, and the new data
is weighted with factor 1.nu is only used for this averaging.

This ensures, that during the optimization process only relevant values are used.
Those are values when the muscles have been activated. All data in the tables are used
with the same weight during the calibration process, independent of the activation
pattern. Longer periods of, for example, rest or maximum contraction do not change
the weight. Every activation level, that is, every table entry, has the same weight. This
is an important advantage over standard optimization methods where all data or only
everyn-th value is used, and the significance of the data regarding the optimization
task is not considered.

Averaging of the entries during updates ensures that the stored values are more reli-
able and robust, as long as no muscle fatigue appears.

The data tables are specified with the interval widthSi. The size of the table is
adjusted as needed with the advent of new values.

Every muscle ownsK tables after data collection, one per each angle at which an
isometric exercise has been performed.

The process of data collection and sorting into tables for a specific isometric trial is
illustrated in figure 5.1.

5.4 Force Determination of Individual Muscles

The calibration process described below is not a global optimization for all parame-
ters at once over all data. The reason for this is that some muscles are cooperating
during the described exercises, making it impossible for the optimization algorithm to
distinguish between the individual muscle contributions.The reason for not merging
all muscles into a single muscle in the model and to record only one extensor and one
flexor muscle is, that during different non-isometric tasks, the muscles are behaving in
different cooperation patterns. Depending on the task and the required force, different
muscles are active (refer to figure 6.8 for example patterns).

In the proposed algorithm, the reference torque,TR, is computed from the recorded
torque,TA, by eliminating the effect of gravity:
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Figure 5.1: Data tables of the calibration: indexing of the table entry based on the
postprocessed EMG signal, and subsequent averaging and storage of the recorded data.

TR = TA−Tg (5.2)

whereTg is the torque measured while all muscles around the observedjoint are re-
laxed. In that case the torqueTg is solely a result from gravity acting on the limbs, as
long as no other external forces are applied, as describes insection 5.2.

The reference torque,TR, is a result ofall activated muscles, but it can be divided
to allow the calibration algorithm to handle each muscle separately, which reduces the
dimension of the parameter space significantly.

To calculate the individual muscle forces,Fm
i , the torque share,Ti , of the reference

torque,TR, has to be determined.
For this the %PCA-weight,w, of a muscle is computed by using the activation of

the muscle weighted with its %PCA by:
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w =

{

%PCA·a(u) if already calibrated

%PCA· u
R otherwise

(5.3)

where %PCA is the relative physiological cross-sectional area of the muscle,R the
maximum recorded EMG signal, andu the postprocessed EMG signal. The required
activation,a(u) is only available if this calibration has been performed before, and
parameters from the previous run are available. Otherwise the activation function is
approximated by a linear relationship.

The shares are summed up for the coactivated muscles, which are the muscles from
the same group as musclei (flexor group, extensor group),

Wca =
N−1

∑
j=0

{

w j if muscles i, j out of the same group

0 otherwise
(5.4)

wherew j is the weight according to equation 5.3 for thej-th muscle, andN is the
number of muscles. Similar for the cocontracting muscles, which are belonging to the
group opposing musclei,

Wcc =
N−1

∑
j=0

{

0 if muscles i, j out of the same group

−w j otherwise
(5.5)

whereN is the number of muscles.
The sum of the shares of both groups is computed with a saturation of the cocon-

tracting shares to avoid errors during computation of the torque share in equation 5.7
for small activations:

W = Wca+

{

Wcc if Wcc < Wca−wi

Wca−wi otherwise
(5.6)

wherewi is the weight of thei-th muscle according to equation 5.3. This ensures
that the share of the cocontracting muscles is not allowed tocancel more than the share
of the muscles activated in cooperation with musclei.

The individual torque contribution of a muscle,Ti , is computed from the reference
torque by means of the estimated shares:

Ti = TR
wi

W
. (5.7)
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wherewi is the share computed according to equation 5.3 for musclei, W the sum of
shares as of equation 5.6, andTR is the reference torque.

Substituting the force of the musculotendinous complex,Fmt
i , in equation 4.23 with

the expression from equation 4.21 for musclei yields

Ti = r iF
mt
i = r iF

m
i cosφi . (5.8)

Solving forFm
i results in

Fm
i =

Ti

r i cosφi
, (5.9)

whereFm
i is an estimation of the muscle force the muscle has contributed when

torqueTi was measured.
We now have a relationship between different muscle activations,ui, (through equa-

tions 5.1) and associated muscle forces,Fm
i , for every entryhi,k of a specific data table

k with 0≤ k < K of musclei.

5.5 Geometry Calibration

The goal of the geometry calibration is to find proper values for the tendon slack length
scales,st

i , for every musclei. Since we are mainly interested in making the EMG-
to-force relationships consistent for different joint angles, we need the relationship
between muscle activation and muscle force for different lengths of the muscles.

As described above, the muscle contractions with data recording are performed un-
der different joint angles, and the data are stored in separate tables for every angle and
for every muscle. The idea is to modify the tendon slack length scales for every muscle
in such a way that the computation of the muscle force based onthe EMG signal of a
specific muscle is consistent for all tables, and, as a result, for all joint angles.

Only if this consistency is established, the computation from the EMG signal to
muscle force can be performed with a satisfying accuracy. Ascan be seen in fig-
ure 5.2, the left diagram shows a significant discrepancy between the EMG-to-force
relationships under different joint angles, because the geometry model is not applied.
Only if the geometry is taken into account with calibrated parameters the muscle force
can be deducted from the EMG signal for different joint angles, as can be seen in the
center diagram. The right diagram shows the EMG-to-force function fitted through the
data of all trials, which establishes a consistent EMG-to-force relationship for different
angles.

Expanding equation 4.4 with expressions from equations 4.5and 4.7 yields (omit-
ting the muscle indexi):

F̃m = fA(l̃m)Fm
o a(u)+ fP(l̃m)Fm

o (5.10)
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Figure 5.2: Steps of the parameter calibration for a single muscle. The left diagram
shows the contents of six data tables for isometric contractions under different angles:
The force output of the muscle based on the force sensor readings in each entry is
plotted against the corresponding EMG activation. The middle diagram shows the
same table, but the force is modified with the force-length curve after the geometry
parameterst of this muscle has been calibrated: The EMG-to-force prediction has been
made consistent for different joint angles. The right diagram shows the EMG-to-force
function after calibration with data from all tables of the muscle.

whereF̃m is an estimation of the muscle force based on the EMG signalu.
Solving equation 5.10 for the function of the muscle activation results in

a(u) =
F̃m− fP(l̃m)Fm

o

fA(l̃m)Fm
o

(5.11)

ReplacingF̃m with the force taken from entryh of tablek, Fm
k,h, and cancelingFm

o
yields

a(u) =

Fm
k,h

Fm
o
− fP(l̃m)

fA(l̃m)
(5.12)

With regard to the data tables, this equation can be interpreted as follows: For every
entry h of a tablek of a specific muscle, the muscle force,Fm

k,h, normalized byFm
o ,

together withst (affectingl̃m) define a point of the activation function,a(u), depending
on u throughu = h

S (equation 5.1 rearranged). As long asFm
o is not known from prior

calibration iterations, the term forfP has to be omitted. In that caseFm
o is substituted by

a constant value greater than zero. This introduces a linearerror for alla(u) that does
not affect the outcome of the optimization, aside from the fact that the passive force is
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not included. The consistency of this function across different tables is established if
the resulting values,a(u), for a given activation,u, are the same for all tables from a
particular muscle. The absolute values are not important. Thus, the linear error is of
no consequence.

Consistency can be established by reducing the standard deviation of the values ob-
tained fora(u) for a given activationu for all corresponding table entries of a particular
muscle through optimization ofst . The standard deviation of the force prediction of
musclei for the EMG value related to table entries with indexh by equation 5.1 is:

σh(s
t) =

√

√

√

√

1
K

K−1

∑
k=0

(

a(uk,h)− āh))
)2

(5.13)

with the activation function from equation 5.12,a(u), the EMG valueuk,h from table
k and entryh, the number of tables of musclei, K, and the average activation, ¯ah. This
computation can be performed for the entry indicesh, because the scaleSi is constant
for every muscle, relating the activation to the same entries for all tables of a particular
muscle. It is assumed that all tables are filled.

Averaging the standard deviations,σh, for a particular slack length scale,st , over all
activations is well suited to evaluate the quality of the calibration, and is computed by:

σ̄(st) =
1

ĥ

ĥ

∑
h=0

σh(s
t) (5.14)

with σh as defined in equation 5.13, andĥ being the highest entry index of all tables
of this muscle.

The shape of the functiona(u) does not need to be known, which is very helpful
considering the fact that different activation functions may be used for the muscles.
Looking at the global scope, minimizinḡσ for every muscle deliversN optimized
valuesst

i , one for every one of theN muscles.
The minimization can be performed by complete subspace search with a fixed step-

size of, for example, 0.001m and an interval of[0.85,1.25] for the tendon slack length
scales. This is preferred over other optimization algorithms, because local minima can
exist. The error over the tendon slack length scales for an example calibration is shown
in figure 7.1 right.

5.6 EMG-to-Force Calibration

In the previous step, the geometry parameters have been optimized, resulting in an
improved consistency of the EMG-to-force relationship fordifferent joint angles. The
EMG-to-force calibration is closely linked to that.
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5.6 EMG-to-Force Calibration

In the EMG-to-force calibration, the parameters of the activation functiona(u) and
the maximum isometric force,Fm

o , for every muscle have to be optimized in such a
way that

a(uk,h)F
m
o −Fm

k,h → min. (5.15)

for all tablesk and all entriesh of the specific muscle.Fm
k,h is the force derived

from the reference torque in entryh of tablek for the particular muscle, anduk,h is
the postprocessed EMG value. As motivated in section 4.3, two muscle activation
functions,aexp(u) andapw(u), with different parameters sets are utilized here. The
calibration for both functions is described in separate sections below.

Both calibrations have in common, that the maximum expectedEMG signal,R, can
be directly read from the data tables: It equals the activation from the highest entry of
all tables of a specific muscle. From the same entry, values for the maximum isometric
force,Fm

o , could also be taken, but experiments have shown that the optimization can
be improved noticeably if this value is optimized together with the other activation
parameter(s).

Optimization of the Exponential Activation Function

According to equation 4.2,aexp(u) is defined as

aexp(u) =
eAuR−1

−1
eA−1

whereA andR are the parameters of the activation function, andu the postprocessed
EMG value. R can be determined as described before, andA is determined together
with Fm

o by a two-dimensional optimization algorithm.
The error function of this optimization is given as

Eexp
emg(A,Fm

o ) = ∑
k

∑
h

(

aexp(uk,h)F
m
o −Fm

k,h

)2
, (5.16)

where the squared differences between forces predicted from the EMG signal,
aexp(uk,h)Fm

o , and forces derived from the measurements,Fm
k,h, are summed over all

entries of all tables of a particular muscle. A is bound to−5 ≤ A < 0, andFm
o to

100N< Fm
o <2500N.

Since the parameters are bounded and the search space has a low dimension, simple
algorithms are sufficient. In this work, a subspace search was performed, which is
described in appendix D.

61



5 Calibration of Parameters

Optimization of the Piecewise Activation Function

The piecewise activation functionapw(u) is defined in equation 4.3 as:

apw(u) =

{

a0
ln(A+1)

ln(A u
u0

+1) if u < u0

m(u−u0)+a0 otherwise

with u0 = 0.3R

requiring three parameters: the maximum expected EMG signal, R, the shape of the
logarithmic portion of the function,A, the activation at the transition point between the
two portions,a0, and the slope of the linear portion,m.

Again,R is directly taken from the top-most entry of all data tables.
Let m̂ be the slope of the regression line of all entries of all tables of the particular

muscle with signalu > u0, andâ0 the value (muscle force) of the same regression line
at the point of transition between the two portions of the curve whereu = u0.

The muscle force of the linear portion can be computed by

Fm(u) = m̂u+ n̂ (5.17)

wheren̂ is they-intercept of the regression line. Now the maximum isometric force,
Fm

o , can be calculated by:
Fm

o = Fm(R) = m̂R+ n̂ (5.18)

Sinceâ0 = m̂u0+ n̂ it follows:

Fm
o = m̂R+ â0− m̂u0 = m̂(R−u0)+ â0 (5.19)

Substitutingu0 = 0.3R from equation 4.3 yields:

Fm
o = 0.7Rm̂+ â0 (5.20)

The slope of the activation of the linear portion ofapw(u), m, can now be obtained by

m=
m̂

Fm
o

, (5.21)

and the activation level at the point of transition by

a0 =
â0

Fm
o

. (5.22)

The parameterA is determined by linear minimum search within the interval[As,Ae]
with As = 5 andAe = 100 (boundaries experimentally determined). The error function
for this minimum search is similar to the error function for the exponential activation
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function, given in equation 5.16, but withFm
o already known:

Epw
emg(A) = ∑

k
∑
h

(

apw(uk,h)F
m
o −Fm

k,h

)2
. (5.23)

This function only depends on the non-linear shape factor,A.

5.7 Remarks on Cocontraction

When calibrating the EMG-to-force parameters, cocontraction cannot be neglected. It
strongly affects the values for the maximum isometric contraction, as does coactiva-
tion. This is taken into account by equation 5.7 during torque distribution when the
parameters are calibrated. Since the muscles are calibrated in sequential order, the
EMG-to-force calibration can be repeated to apply the EMG parameters to the distri-
bution.

If the cocontracting muscles are neglected in equation 5.6,the calibration error of
the maximum force,Fm

o , can reach about 50%.
Experiments revealed that due to the linear approximation of the activation for un-

calibrated muscles, a single repetition is sufficient, and should be performed to incor-
porate the effect of the passive muscle force in the geometrycalibration. Additional
iterations do not improve the results considerably. This isanalyzed in section 7.1.1
with some examples.

5.8 Properties of the Calibration

The calibration presented in this chapter has a number of important properties which
are summarized here for convenience.

• The algorithm has an automatic selection of relevant measurements for calibra-
tion. This keeps the number of reference values low and reduces the computa-
tional effort of the optimization algorithms.

• Storing the data in tables indexed by the activation of the individual muscle puts
the same weight on all activations. If desired, the weight could be modified
according to the EMG activity, emphasizing a special range of muscle activity.

• The algorithm is fast due to splitting of the whole set of parameters into several
groups, reducing the parameter space for the individual optimizations.

• The algorithm uses an estimation for the computation of theindividual muscle
contributions. Initially, this distribution assumes a linear activation function,
and the distribution is refined with calibrated activation functions for repeated
iterations.
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5 Calibration of Parameters

• The passive muscle force is included in the geometry optimization only for re-
peated optimizations.

• Because the optimization includes sequential steps of low-dimensional opti-
mizations, in contrast to an optimization where all parameters are determined
at the same time, the whole algorithms allows interesting insight into the pro-
cess. The behavior of the system as well as measurement artifacts and results
of the calibration can be interpreted. Local minima are avoided if the step size
of the subspace search is chosen small enough without increasing the computa-
tional effort beyond limits. This assumes that the torque distribution is not too
inaccurate.

• Due to the low dimension of the parameter spaces, the algorithm is well suited
for optimization with a reduced number of reference recordings. Of course,
accuracy is improved with more trials.

• The fixed distribution of the measured torque to the individual muscles can be
inaccurate and reduce overall performance. It is not as adaptable as a complete
optimization. On the other hand, an all-in-one optimization can result in a dis-
torted distribution among the muscles if they are activatedin linear relation. In
that case, an all-in-one optimization cannot determine which muscles contribute
which portion. Experiments have shown that a linear relation between the ac-
tivations is common for muscles out of the same group (extensor group, flexor
group).

Finally, it is to be noted that this calibration algorithm turned out to be very helpful
during investigation of the biomechanical model utilized in this work. It allowed deep
insight into the mechanics of the model and interpretation of parameter variation and
resulting effects during the development of this work.

Important results from those investigations, like the performance improvement
through inclusion of the geometry model, together with experimental data from cal-
ibrations are presented in chapter 7. But before that, chapter 6 presents the hardware
that was developed for those experiments.
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6 Exoskeleton Hardware

In the introduction the importance of mobility for people has been motivated. The
variety of potential applications gave birth to the idea to develop a powered lower
extremity exoskeleton. In order not to run into too many problems with the mechanical
construction, the exoskeleton was designed to support onlyeveryday movements: sit-
to-stand, stand-to-sit, walking, and climbing stairs up and down.

From the joints mainly involved in those tasks – the hip, kneeand ankle joints –
the knee was chosen for support, because it is very importantfor movements which
require large forces and where support is actually helpful:the sit-to-stand and stair
climbing movements. During normal gait, large propulsive forces are produced in the
ankle joint, but adding support for those muscles is more a mechanical engineering
challenge because of more stringent size and weight constraints. Lack of hip muscle
forces can be compensated in part through pelvis motion.

This chapter describes the mechanical construction and theelectronic components of
the exoskeleton. It is organized as follows: In the following section 6.1 general require-
ments of an exoskeleton to support the knee joint are specified. Those requirements
lead to a design which is described in section 6.2. The actuation of this exoskeleton is
described in section 6.3, followed by the sensors in 6.4, thedata processing unit in 6.5,
and the communication structure that connects all components in section 6.6. Safety
issues are discussed in section 6.7 before the chapter is closed with a summary of the
properties of the exoskeleton in section 6.8.

6.1 Requirements

This section describes the requirements of the system. The design parameters of the
exoskeleton are: range of motion, velocity in the knee joint, torque in the knee joint,
size and weight, and power consumption.

The range of motion can be directly measured: It should rangefrom 0◦ (straight leg)
to approximately−110◦ (knee flexion). While the natural range of motion is larger, it
is sufficient for the movements which should be investigated.

The required velocities are functions of the joint angles for the particular move-
ments. Figure 6.1 shows the velocities plotted over the kneeangle for a single step of
slow and normal gait, the sit-to-stand movement and slow stair climbing. For normal
gait, angular velocities of 200–400/s are not uncommon, while slow walking requires
velocities of about 100/s. During the sit-to-stand movement, the velocities are rather
small, typically below 100/s. Figure 6.3 shows an example plot of the knee angle and
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velocity trajectories of normal gait. It has to be pointed out, that the movements are
performed rather slow, as could be expected from people who are in need of support.

The required torque in the knee joint is not so easy to define. It depends on the size
and weight of the subject and how much support is desired. Buta maximum torque
of approximately 50–100Nm should be sufficient for the experiments intended here. It
should be kept in mind that the power of the actuator determines its size, weight, and
power consumption. For those parameters no definite limits can be given, since they
are a matter of comfort and acceptance.
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6.2 General Design

Figure 6.4: Complete exoskeleton, with the actuator connecting thigh and shank of
the orthosis (right), the single board computer and power supply attached to the waist
belt (left), and the display and keypad (bottom left).

6.2 General Design

The overall design of the exoskeleton system is based on an experiment orthosis man-
ufactured by Otto Bock1 that is normally used for patients with disabilities in their
locomotor system. As shown in Fig. 6.4 the orthosis covers the thigh, shank and foot
with two hinge joints at the knee and ankle. The two joints limit the motion to a single
axis each, allowing movement in sagittal plane only. Support for the operator is only
given at the knee joint, the ankle joint can be moved passively and allows putting the
additional weight of the exoskeleton to the ground. The force support is produced by a
linear actuator, shown in detail in figure 6.5, that is connected at the thigh and shank of
the orthosis with two joints with two degrees of freedom each. By changing the length
of the actuator the angle between thigh and shank can be modified. The force of the
actuator is measured by a sensor attached between the tip of the actuator and the joint
with the shank.

Embedded in a soft fabric between the orthosis and the leg of the human are six
EMG sensors: three on the frontside and three on the backsideof the thigh, measuring
the activity of six muscles responsible for knee flexion and extension.

All sensors are connected to an SPI2 bus that is used by a single board computer
(SBC) for data acquisition and support control. The power supply can be carried on a
waist belt, as can be seen in figure 6.4, allowing full autonomous operation.

6.3 Actuation

Regarding the actuation, one has to decide between several fundamental concepts: ro-
tatory actuators (like electric motors with harmonic drives), or linear actuators (electric

1Otto Bock HealthCare GmbH, 37115 Duderstadt, Germany
2Serial Peripheral Interface bus: synchronous serial data link standard designed by Motorola.

67



6 Exoskeleton Hardware

1

2

A

3

4

Figure 6.5: Actuator that is attached to the knee joint: (1) emergency switch, (2)
watchdog, (3) force sensor, (4) hardware PID controller andsignal conversion board.
The pwm-amplifier and DC motor are hidden below (4). (A) Showsthe direction of
action of the piston.

motors coupled to ball screws, pneumatic or hydraulic pistons, pneumatic muscles).
We decided to use an electric motor that is connected to a ballscrew with a gear belt
for the following reasons: When the actuator is attached to the thigh and shank of the
exoskeleton properly, the geometry of the actuation results in a variable transmission
from the linear velocity to the angular velocity and from theactuator force to the joint
torque. When the knee is flexed the actuator produces a large torque with a low an-
gular velocity, whereas in the straight-leg configuration the torque is rather small in
favor of a high angular velocity. This is a very desirable property, because it resem-
bles characteristics of human movement: For example, the sit-to-stand movement is
quite slow but requires large torques during the initial phase of getting up. Walking
on the other hand requires high angular velocities in the knee joint during swing phase
where the leg is being extended, but only little torque. Climbing stairs is somewhere
in-between: The movement itself is slower than walking but requires more torque,
and higher angular velocities are found in regions where theknee is more flexed but
with low torques. This is a superior property compared to rotatory actuators, since it
resembles the characteristics of human movements. A commonalternative approach
with actuation through harmonic drives does not have this advantage: Since the geo-
metric relationship remains unchanged in all joint configurations, the actuation has to
be able to produce the maximum required torque and angular velocity under the same
circumstances. Figure 6.1 shows the angular velocity plotted against the knee angle
for walking, climbing stairs and the sit-to-stand movement. All those movements are
performed rather slowly, as performed by people who are in need of support.

An electric actuation was chosen because the overall power to weight ratio, that is,
actuation plus power supply, is lower than for the others, and electric motors allow
execution of very smooth motions.
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6.3 Actuation

The linear actuator consists of a ball screw connected to a standard DC motor3 by a
gear belt and is shown in figure 6.5. Attached to the casing of the ball screw is the pwm-
amplifier4 which powers the actuator, a circuit board which connects the amplifier to
the SPI bus, and a watch dog that takes over control in case of acomputer failure.

The motor is a maxon RE355 with a power consumption of 90W, and a maximum
power output of 206W at 42V. The amplifier is a Copley 4122Z6 with a voltage range
of 24–90V and a maximum output current of 20A. The total weight of the actuator is
2.5kg.

The actuator can change its length between the points of attachment from 300–
430mm, and has a maximum force output of approximately 1700N. The points of
attachment to the orthosis have been chosen in such a way thatthe resulting range
of motion and angular velocity is sufficient for slow every-day movements. The lo-
cation of those points is given in appendix B. Arranging those points is a trade-off
between the angular range of motion, the maximum angular velocity, and the resulting
maximum torque in the knee joint for a given actuator.

In the chosen configuration the range of motion is approximately 110, which is
smaller than the natural range of motion for safety reasons.The angular velocity is
depending on the linear velocity and the current knee angle.The resulting angular
velocity without load for the maximum linear velocity of approximately 100mm/s over
the range of motion is plotted in figure 6.1 together with examples of the movements
of interest. It can be seen that for most movements the angular velocities are sufficient,
because they fall in-between the curves of the actuation.

In figure 6.2 the maximum torque produced by the actuator is plotted over the joint
angle. The maximum torque is produced at a joint angle of -75 due to the points of
attachment of the actuator to the orthosis.

The torque that can be applied to the orthosis by the actuatoris also limited by
the fact that the orthosis is deformed under large forces. Not the whole force that is
produced by the actuator is immediately transferred into a joint torque.

Obviously an actuator can be constructed that would be fast and powerful enough
for fast movements. Limitations are only given by the additional weight that would be
imposed on the operator. In this work the focus is put on the man-machine-interface
and not on the mechanical construction. A lightweight actuator that is sufficient to
support slower motions was used for this purpose.

3Electric motor that is powered with direct current (DC).
4Amplifier generating output signals with pulse-width modulation.
5maxon motor uk, http://www.maxonmotor.co.uk/, 2007.
6Copley Controls Corp., http://www.copleycontrols.com/,2007.
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thigh shankjoint axis

magnet

sensor

Figure 6.6: Hall sensor attachment to the knee. The magnet is mounted on the thigh
part of the knee joint. The Hall sensor is fixed to the circuit board above the magnet
which is connected to the shank of the orthosis.

6.4 Sensors

Three different types of sensors are attached to the exoskeleton: The first type mea-
sures the knee angle, the second type the force output of the actuator, and the third type
reads the EMG signals of the operator.

Angle Sensor

The control system needs the knee and hip angles to properly predict the muscle forces.
This can be performed very simply for the knee joint, since the orthosis limits the
motion of the knee joint to the sagittal plane around a singlefixed axis. This allows
the application of a Hall sensor which is accurate and reliable.

As shown in figure 6.6, the magnet is attached to the thigh of the orthosis and the
Hall sensor is placed above the magnet on the circuit board which is fixed to the shank.
During joint rotation the orientation of the magnetic field below the sensor is changed,
which is measured by the sensor.

The Hall sensor is a Philips7 KMZ41, connected to a Philips UZZ9001 signal con-
ditioning IC [DW00], which readily provides a digital output to the bus.

Due to the three degrees of freedom in the hip joint, a complexmechanical con-
struction or other sensors, like goniometers, would have tobe applied, making the ap-
plication of the exoskeleton more uncomfortable. Thus, thehip angle is not measured,
but determined in two different ways: During calibration itis set to 90, because it is
assumed that the operator is sitting upright on a chair. During walking and climbing
stairs the hip angle is set equal to the negative knee angle, which is an unconventional
but sufficient approximation. Besides, the hip angle only affects the prediction of the
two-joint muscles, which are the rectus femoris and the flexor muscles, but the large
forces in the considered movements are contributed by the vastus medialis and vastus
lateralis.

7Philips Semiconductors, http://www.philips-semiconductors.com, 2007.
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6.4 Sensors

Force Sensor

The force sensor is attached in series with the actuator as can be seen in figure 6.5. It is
responsible for measuring the force that is produced by the actuator. The force sensor
is a GS XFTC3008 with a range of±2000N, a non-linearity of less than±0.5% full
scale, and a sensitivity of±10mV/V. It is connected to a level adaptation circuit which
outputs to the MAX12309 12-bit A/D-converter which is connected to the bus.

EMG Sensors

The EMG sensors reading the muscle activations are embeddedin a soft tissue of the
orthosis which is holding them on the skin on top of selected muscles. The choice
of muscles and sensor location is described below. The sensors are Delsys 2.3 Sin-
gle Differential Electrodes10 which have an inbuilt bandpass from 20–450Hz, and an
amplifier with a gain of 1000V/V. An additional amplifier and level shifter adapts the
output to the MAX1230 12-bit A/D-converter which is connected to the bus.

1
2

3

4

6
5

Figure 6.7: Six EMG sensors are embedded in the thigh brace of the orthosis: (1)-(3)
measuring knee extensor activities, (4)-(6) measuring knee flexor activities.

Figure 6.7 shows the EMG sensors embedded in the thigh brace of the orthosis.
Three sensors are measuring knee extensor activities on thefrontside of the thigh and
three sensors knee flexor activities on the backside.

71



6 Exoskeleton Hardware

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 1  2  3  4  5  6  7  8  9

P
os

tp
ro

ce
ss

ed
 E

M
G

 [V
]

Time [s]

Rectus femoris
Vastus medialis
Vastus lateralis

Semimembranosus
Semitendinosus
Biceps femoris

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 1  2  3  4  5  6  7

P
os

tp
ro

ce
ss

ed
 E

M
G

 [V
]

Time [s]

Rectus femoris
Vastus medialis
Vastus lateralis

Semimembranosus
Semitendinosus
Biceps femoris

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 2  3  4  5  6  7  8  9  10

P
os

tp
ro

ce
ss

ed
 E

M
G

 [V
]

Time [s]

Rectus Femoris
Vastus Medialis
Vastus Lateralis

Semimembranosus
Semitendinosus
Biceps Femoris

Figure 6.8: Example of postprocessed EMG patterns of walking (left), standing up
(middle), and climbing a stair (right). The signal is amplified by the electrodes.

Muscle Selection and Sensor Placement

Since the exoskeleton can only offer support in the knee joint, it is feasible to try to
detect the intention by reading activations of muscles which flex and extend the knee.
Figure 6.9 shows those muscles.

Although all those muscles are mainly working on knee flexionand extension, some
of them also have other tasks: The sartorius for example is also flexing the hip joint
and can rotate the shank inwards. Stronger muscles are only activated during tasks that
require more force like raising from a chair, whereas smaller muscles are activated dur-
ing tasks where finer force control is necessary, for example, when positioning the foot
prior to floor contact. Depending on the kind of movement thatis performed, different
muscles can be activated, or in a slightly different order. Following that, it would be
best to be able to record all muscles to properly analyze the desired movement.

Unfortunately it is not possible to measure all muscles withsurface electrodes. As
can be seen in figure 6.9, some muscles are located deep withinthe thigh close to the
femur.

It is reasonable to select muscles according to their proximity to the skin, because
they can be measured by surface electrodes, and their strength, because of a poten-
tially high contribution to the movement, to get a good estimation of the overall force
production.

Deciding which muscles have to be evaluated is a trade-off between complexity and
accuracy of interpretation.

The muscles selected for the exoskeleton of this work with their %PCA are: (1)
the rectus femoris (8%), (2) vastus medialis (15%), (3) vastus lateralis (20%), and (4)
the semimembranosus (10%), (5) semitendinosus (3%), and (6) biceps femoris (10%).
Those muscles are shown in figure 6.9. They cover a total of 66%of the cross-sectional
area of all thigh muscles. The remaining area is occupied by the vastus intermedius
(13%), gastrocnemius (19%), sartorius (1%), and gracilis (1%) [Win90a]. While the
latter two are neglectable due to their small force output, the gastrocnemius is not

8Distributed by GS sensors / disynet, http://www.sensoren.de, 2007.
9From Analog Devices, Inc., http://www.analog-devices.com, 2007.

10Delsys Inc., http://www.delsys.com/Products/EMGSensors_Specifications.html, 2007.
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2/5 − caput longum/breve

1 − biceps femoris

4 − semitendinosus 

11 − semimembranosus

3 − vastus intermedius

5 − vastus medialis

7 − vastus lateralis

12 − sartorius

1 − rectus femoris

cross−section cross−section

Figure 6.9: Superficial muscles of the frontside of the thigh (left) and the backside
(right), together with cross-sectional views (adapted from [Pla03]). The dark colored
muscles are responsible for flexing and extending the knee, the gray shaded are moving
the hip and ankle joints. The cross-sectional view of the extensor muscles (left) shows
the vastus intermedius hidden beneath the rectus femoris and the vasti.

recorded because it is a muscle spanning the knee and ankle joint. Muscle activations
cannot simply be related to the knee joint without taking into account the ankle. The
vastus intermedius unfortunately is not recordable with surface electrodes. It is located
along the frontside of the femur below the rectus femoris, the vastus medialis and the
vastus lateralis.

Figure 6.8 shows the activation pattern of the selected muscles for some example
movements. Especially for the extensor muscles it can be seen that recording of all
three muscles is required since they are active at differenttimes.

Choosing the correct position and orientation according tothe muscle fibers is very
crucial to this application. Bad sensor placement results in measurements that do not
reflect the force production. General placement recommendations are published for
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example in [Luc07], and a guide to sensor placement for individual muscles can be
found in [HFM+99,FH00].

6.5 Data Processing Unit

The single board computer is a Commel LE-37011 equipped with a Pentium-M735
1.7GHz12 and 1GB of RAM. The operating system of the SBC is SuSE 9.313, running
the real-time linux RTAI14 with kernel 2.6.15.

The realtime data acquisition system was written as part of adiploma thesis [Wal06],
and the software evaluating all sensor data and computing the control signal is de-
scribed in chapter 4.

In the system presented here, the torque control loop was running as a kernel module
with 1kHz, the model evaluation and support computation wasrunning in user space
in non-realtime with approximately 100Hz.

6.6 Signal Flow

The hardware structure is organized around a central SPI busthat connects all compo-
nents, as shown in figure 6.10. Those components are the SBC, the display and keypad
unit, the sensors and the actuator. The safety system is connected to the bus as well,
but only to listen for a heartbeat of the computer.

The SPI bus is a master-slave bus where the SBC serves as the master talking to
all other devices. Since the SBC has no direct SPI interface,an Atmel MEGA32 mi-
crocontroller15 acts as interface between the SPI bus and the parallel port ofthe SBC.
All sensors are connected to the SPI-bus by A/D-converters (ADC) where necessary.
The Philips UZZ9001 (UZZ) is an integrated circuit that evaluates and postprocesses
the output of the Hall sensor, and performs A/D conversion. AD/A-converter (DAC)
is connected to the bus to create the analog control signal for the pwm-amplifier that
powers the actuator. In addition to that, a display and keypad is linked to the bus to
allow simple user interaction, like starting and stopping the system and to adjust the
support ratio.

6.7 Safety Concept

The safety concept is a bundle of different measures which prevent and handle system
failures, and minimizes consequences for the operator on different levels, depending on

11Commate Computer Inc., http://www.tcommate.com.tw/manual/LE-370.pdf, 2007.
12Intel Corporation, http://www.intel.com/products/processor/pentiumm, 2007.
13SuSE Linux can be found on http://www.novell.com/linux/, 2007.
14RealTime Application Interface, https://www.rtai.org/,2007.
15Atmel Corporation, http://www.atmel.com/, 2007.
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Figure 6.10: Overview of the hardware structure of the control system: All com-
ponents use the central SPI bus that connects all sensors andthe actuator. The SBC
acts as the master and collects all sensor data over the bus. The hardware watchdog
monitors the activity on the bus, and switches to the hardware P-controller as long as
the single board computer does not send commands to the pwm-amplifier, assuming
an SBC failure.

the layer where they occurred. This safety system allows experiments and application
of the exoskeleton in life-like environments.

But it has to be pointed out that a secure fallback state does not exist for an exo-
skeleton. Depending on the movement in which the error occurs, the system cannot
determine a safe position on its own to avoid stumbling and tomaintain a stable pose.
For example, extending or flexing the knee joint by default might unbalance the oper-
ator, and holding the knee angle fixed can lead to stumbling over an obstacle or a step.
Nevertheless, some actions can be performed to minimize consequences of a failure.

The following subsections are arranged in order of fault-handling, explaining possi-
ble error sources and countermeasurements.

Software

In the software layer all sensor data is range-checked and clipped to sensible bound-
aries. The calculated desired force as well as the raw outputto the D/A-converter are
clipped in case of errors in the calculation of the desired support.

This minimizes bad system behavior if connection to sensorsis lost or EMG sensors
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6 Exoskeleton Hardware

are not well connected to the skin anymore. But of course, misinterpretation of valid
sensor signals can result in natural movement, which can still let the operator stumble
over obstacles. But since the algorithm presented in chapter 4 is very robust, and since
the operator is in direct and permanent control of the performed movement, this should
not happen. But it cannot be guaranteed or mathematically proven.

Hardware

The external hardware watchdog is permanently monitoring the chip select line to the
D/A-converter of the actuator. If the chip is not selected for a few hundred millisec-
onds (adjustable), the watchdog assumes that the SBC has stopped working properly.
It switches the input of the pwm-amplifier from the D/A-converter connected to the
SPI bus to a hardware P-controller through a CMOS switch as shown in figure 6.10.
This P-controller gets the current actuator force as feedback and controls the output
signal to the pwm-amplifier in such a way that a preset force between thigh and shank
is applied. This force was set to zero during experiments with a healthy operator
who can stabilize himself, allowing unhindered motion withthe leg if the computer is
locked up or the SPI-bus is broken. No force support is generated in that case. If the
SBC is sending commands to the pwm-amplifier again, the watchdog switches back
to software control. This is not always a desirable solution, especially if the system
fails while the operator is supporting himself only with theactuated leg. On the other
hand, locking the actuator may lead to stumbling in many other cases. Due to weight
and power consumption limitations, adding a second system that runs in hot-standby
is not an alternative. But the target force can also be set to avalue above zero so that
the actuation adds some constant extension force to give theoperator a chance to react
properly and support himself or herself. But in any case, themovement will not be as
expected by the operator and stumbling may occur.

Mechanics

If for some reason (a short circuit or something similar) thecontrol signal of the ac-
tuator is unreasonably large or will command the actuator todrive with full power in
one direction, the last safety protection for the operator are the joint angle limitations
that are stricter than the natural range of motion of the kneejoint. The maximum ac-
celeration is limited through the maximum moment the motor can generate and this is
well within safety limitations. Furthermore, the actuatorhas its own mechanical limi-
tations. For the knee flexion this limit is reached before thehuman or exoskeleton joint
limits are reached. The limit of the extension is reached slightly after full extension,
but deformation of the orthosis protects the operator in that case. If the actuator is
working with full force against its own mechanical limits, the gear-belt that connects
the electric motor and the ball screw will tear apart before any harm is caused.

In case of a complete power failure, the exoskeleton cannot produce support actively.
But the friction of the actuator is rather large, so that it does not immediately give way
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to undesired knee flexion. On the other hand the actuator is not completely locked, and
the knee joint can be moved from outside in this case.

6.8 Summary of Properties

The exoskeleton presented in this work is optimized for the desired experiments. The
movements of interest are sit-to-stand, walking and climbing stairs. It limits the move-
ments to rather low velocities, to allow the actuator limited in size, weight and power
to produce enough force to support the strenuous parts of themovements. During
walking the required forces are rather low, and the other movements are better suited
to show the performance of the system.

The system itself is completely mobile. The autonomous running time is mainly de-
pending on the power consumption of the actuator and the SBC.While the consump-
tion of the first one highly depends on the performed movements and support ratio,
the latter one has a permanent, rather large consumption. The presented algorithm can
also work with an SBC with lower computational power requiring less energy.

The experiments presented in the following chapter 7 verifythat the exoskeleton
construction is suitable to perform the desired movements with adequate support to
allow an analysis of the cooperation between the human operator and the machine.
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7 Experiments

This chapter presents experiments with the exoskeleton. Those experiments are di-
vided into two groups: The first group is used to perform and analyze the calibration
algorithm, and the second group presents experiments with the actuated exoskeleton.

In the first group recorded data is used to calibrate the modelparameters, and the
performance of the model is tested with several measurements. The complexity of the
model is justified by pointing out the improvements by including certain properties.
Furthermore, the model prediction characteristics are quantified for data not previous-
ly used during calibration. In the second group the behaviorof the whole system, that
is, the human operator using the exoskeleton, is analyzed, regarding common move-
ments like walking, climbing stairs and the sit-to-stand movement. The support for
the different phases of the movements is discussed, and the resulting reaction of the
human. For those experiments the performance of the system as a whole is hard to
quantify. The difficult question is: How can the interface and the intention prediction
be evaluated? An exact "reference desire" in a natural environment is not available to
compare the prediction with. But methods applied in this work are explained as an
introduction to the experiments with actuation in section 7.2.1.

For both groups, representative data is shown in greater detail to explain the behavior
of the system at some crucial points. This is very important to get a good understanding
of the matter. Only after that it is useful to look at the performance as a whole.

During all experiments it was tried to avoid muscle fatigue through appropriate paus-
es, since it is not considered in the model and can influence the quality of the results.

The chapter is organized as follows: Section 7.1 describes the calibration experi-
ments, including the model analysis and justification, section 7.2 presents the system
behavior of the actuated exoskeleton, and section 7.3 discusses the experiments and
summarizes the overall system behavior.

In most of the following diagrams the knee angle is shown. A knee angle of 0
indicates full extension, and negative values indicate knee flexion.

7.1 Calibration

As described in section 5.1, the calibration is divided intodetermination of geometry
parameters and determination of EMG-related parameters. For both operations, the
operator is sitting on a chair in an upright position performing isometric contractions
with extensor and flexor muscles of the knee under different angles as described in
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section 5.2. The leg with the exoskeleton must not have any floor contact below the
knee joint.

During every measurement, the muscles have been contractedfour to five times with
a large, but submaximal force. In-between the measurementsshort pauses have been
inserted to avoid muscle fatigue.

The calibration example described in this section was performed on data from the
following exercises:

1. isometric extension (trials E0-E4) at−101◦, −86◦, −70◦, −47◦, and−27◦.

2. isometric flexion (trials F0-F4) at−95◦, −73◦, −64◦, −47◦, and−33◦.

The geometry optimization was performed as described in section 5.5, with different
properties activated to show the performance of the model. Afterthat, the EMG-to-
force parameters have been optimized according to section 5.6, and optimization of the
geometry calibration and the EMG calibration has been repeated to refine the solutions
as described in sections 5.5 and 5.7.

Results of the calibration are presented and analyzed in thefollowing sections.

7.1.1 Geometry Calibration

It should be pointed out onesmore that the geometry calibration is responsible for es-
tablishing consistency of the EMG-to-force relationshipsacross different joint angles.
According to section 5.5 the consistency is improved ifσ̄ , given in equation 5.14,
is reduced for every muscle. To analyze this, and to justify the use of the complex
body model and some properties, the geometry calibration has been performed in five
versions. Every version turns off specific features.

The first version does not include the musculotendinous model at all. The knee
torque contribution of a muscle is calculated by

T = rF m
o a(u) (7.1)

wherer is the moment arm around the joint,Fm
o is the maximum isometric force at

optimal fiber length, anda(u) the activation of the muscle.
The second version includes the musculotendinous model, but does not calibrate the

tendon slack length scale of the muscle: The scale is set tost
i = 1.0 for 0≤ i < N,

with N being the number of muscles. The third version includes the musculotendinous
model, but omits the influence of the passive force,Fm

P , and the pennation angle,φ .
The fourth version only neglects the pennation angle, and finally, the fifth version
incorporates the complete model as described in section 4.3.

Table 7.1 shows the minimum averaged standard deviations asof equation 5.14 for
the different versions. The resulting tendon slack length scales are given in table 7.2
(session S5). It can be seen that the complete model can reduce the values by more
than fifty percent compared to the absence of the model. This is especially important
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7.1 Calibration

without uncalibrated calibrated, calibrated, complete
geometry geometry no Fm

P , noφ withoutφ model
rectus femoris 50.1 9772.7 24.8 23.5 23.3
vastus medialis 36.5 38.3 11.9 12.4 12.4
vastus lateralis 50.2 53.5 22.3 20.6 20.0
semimembran. 75.9 224.6 86.5 86.5 55.5
semitendinosus 24.1 49.3 22.4 22.2 22.3
biceps femoris 66.5 229.4 47.2 43.4 43.4

Table 7.1: Minimum σ̄ of different versions of the geometry calibration for the in-
dividual muscles, as detailed in the text, multiplied by theapproximatedFm

o of the
individual muscles (refer to section 5.5). The unit is [N].

for the extensor muscles, since they are producing large forces during the considered
movements, and bad estimations result in system behavior that is hard to predict for the
operator. The results in table 7.1 also show that the inclusion of the musculotendinous
model without a proper calibration can produce results thatare far worse than without
the model at all. This is due to the strong effect of the force-length relationship on
the force output, and the sensitivity of the model to the tendon slack length and the
associated scale. To show this more clearly, figure 7.1 (right) shows the individual̄σi

as a function of the tendon slack length scale. As can be seen,the minima lie in very
narrow valleys for most muscles.

Figure 7.1 (left) shows which part of the force-length curves is covered with the
angles from this particular calibration. Both figures explain the results from the cali-
bration very good: The scale for the rectus femoris isst

0 ≪ 1.0 resulting in a larger̄σ
of the uncalibrated model as shown in table 7.1. Using the calibrated geometry model
without the passive force and pennation angle reducesσ̄ massively, and inclusion of
the latter two improves the results even further. Theσ̄(st) curve for the vastus me-
dialis is not so steep forst

1 < 1.12, so using default values from literature does not
produce aσ̄ as large as for the rectus femoris. It is similar toσ̄ without the model
at all. But applying the calibration reduces̄σ to 33%. Inclusion of the passive force
and the pennation angle makes the result slightly worse due to small errors in the mod-
el. Leaving the geometry model out and using uncalibrated parameters for the vastus
lateralis yields similar results, but inclusion of the calibration reduces̄σ to 44%, and
inclusion of the passive force and pennation angle successively down to 40%. The
minimum of the semimembranosus lies in a very narrow valley,resulting in a largēσ
for the uncalibrated parameters. Inclusion of the calibrated geometry model without
the pennation angle does not improve the result compared to not using the model at all.
The pennation angle at optimal fiber length,φo, of this muscle is 15, and including this
property reduces̄σ by approximately 27% compared to not using the geometry mod-
el. Inclusion of the model for the semitendinosus reducesσ̄ by approximately 10%
compared to not using the model, and by more than 45% comparedto the uncalibrated
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Figure 7.1: Left: ranges of the normalized muscle fiber lengths for the minimum and
maximum knee angles during calibration. Right:σ̄ during calibration of the tendon
slack length scalesst

i for the rectus femoris (RF), vastus medialis (VM), vastus lateralis
(VL), semimembranosus (SM), semitendinosus (ST), and biceps femoris (BF). Due to
simplifications in the model, the semitendinosus has no minimum within the interval.

model. The different knee angles of this calibration did notstretch the muscle signifi-
cantly so only the plateau region of the active force-lengthcurve is covered. Inclusion
of the passive force and pennation angle has almost no effect. Finally, the complete
model reduces̄σ for the biceps femoris compared to not using the model by 30%,and
compared to the uncalibrated model by more than 80%. The passive force has a small
influence here, and the pennation angle is 0°.

When looking at the minimum values of̄σ it has to be pointed out that inclusion of
a calibration is definitely required if a biomechanical model is used. The inclusion of
the model without a proper calibration of the parameter can produce results far worse
than without the musculotendinous model at all.

The improvement of the calibrated model compared to not using the model can best
be viewed with the muscle force plotted over the postprocessed EMG signal as shown
in figures 7.2, for the extensor muscles, and 7.3, for the flexor muscles. The diagrams
show the different isometric contractions with muscle force plotted against EMG sig-
nal. The left column shows the geometry calibration withoutthe musculotendinous
model, the middle column shows results from the uncalibrated model, and the right
column shows the complete calibrated model. Obviously, theconsistency is improved
very much, since in the right column of both diagrams the curves have a very low di-
vergence. This is especially notable for the extensor muscles and the trials where the
leg is only slightly flexed (trials E3, E4): The effect of the muscle fiber force-length
relationship has a strong influence here. According to diagram 7.1 (left), the extensor
forces are modulated with values of the force-length relationship close to 0.6, because
the muscle fibers are very short in this pose. If the geometry model is omitted the
resulting muscle force is overestimated if the knee is extended, and underestimated
for knee flexion. This becomes obvious by looking at one arbitrary diagram in the
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Figure 7.2: Effect of the geometry model on the EMG-to-force relationship for the
rectus femoris (top), vastus medialis (middle), and vastuslateralis (bottom). The dia-
grams show the individual muscle forces, based on the measurements, plotted against
the postprocessed EMG signal under different knee angles ina sitting position. The
left column shows the relationships without taking into account the musculotendinous
model. The middle column shows the model with uncalibrated parameters taken from
literature, and the right column shows the complete model with calibrated parameters.
It can be seen that with the calibrated model, the force prediction based on the EMG
signal is much more consistent across different knee angles.
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Figure 7.3: EMG-to-force relationship of the semimembranosus (top), semitendinosus
(middle), and biceps femoris (bottom). Left column: no geometry model, center col-
umn: uncalibrated geometry, and right column: calibrated geometry. As can be seen,
the improvement is not as significant as for the extensor muscles. It can be seen, that
inclusion of the musculotendinous model without a proper calibration algorithm for
the tendon slack length scales does not improve the consistency of the EMG-to-force
relationship.
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left column of figure 7.2. Averaging those curves would yieldan EMG-to-force rela-
tionship, although a very inaccurate one. Applying this curve for the EMG-to-force
computation for all angles instead of the original curves overestimates all forces for
angles with corresponding curves below the averaged, and underestimates all forces
for angles with curves above the averaged. This is solved by the geometry calibration
as can be seen in the diagrams of the right column in the same figure.

A similar effect of the influence of muscle fiber length can be seen for the knee
flexor muscles, especially for trial F0 in the left column of figure 7.3: In that case the
knee is flexed and the fibers are very short. Without the geometry model muscle forces
in this configuration would be overestimated.
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Figure 7.4: Repeated optimization of the geometry and EMG parameters results in
a quick convergence of the resulting tendon slack length scales. Step 0 indicates the
initial values. The scales are dimensionless.

Repeated optimization

After the EMG calibration has been performed, the geometry calibration was repeated
with the same input data to refine the torque distribution with the actual activation
functions and to incorporate the influence of the passive muscle force. After that, the
EMG calibration has also been repeated. But this repetitionhas only been performed
once to produce the values presented in the diagrams here, except for figure 7.4. This
figure shows the quick annealing of the geometry parameters for ten iterations over
both calibrations. Although they do not converge toward fixed values, one iteration
is sufficient to obtain feasible values. Even a repetition toinclude the EMG-related
parameters into the torque distribution has no significant influence. More iterations do
not improve the geometry optimization.
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Consistency across different sessions

As stated above, the geometry parameters are subject-dependent but do not regard the
physical condition of the subject. But since the calibration of those geometry param-
eters utilizes the EMG-to-force relationship, it has to be investigated if the calibrated
geometry parameters are consistent across different sessions or if they are influenced
unintentionally by variable properties related to the EMG recordings. Experiments to
investigate this have been separated by at least four days between each other. Results
from five sessions are summarized in table 7.2. The table shows the scale of each
muscle for every session S1–S5, together with the average ofthe scales, ¯st

i , and the
standard deviation of the scales,σst

i
, for each muscle separately. It can be seen that

the scales have a very low variance across the sessions. It isespecially low for the

S1 S2 S3 S4 S5 s̄t
i σst

i

rectus femoris 0.895 0.890 0.900 0.895 0.885 0.893 0.00570
vastus medialis 1.135 1.110 1.100 1.120 1.105 1.114 0.01387
vastus lateralis 1.100 1.075 1.085 1.090 1.075 1.085 0.01061
semimembranosus1.085 1.070 1.070 1.080 1.080 1.077 0.00671
semitendinosus 1.250 1.250 1.250 1.220 1.250 1.244 0.01342
biceps femoris 1.130 1.115 1.105 1.125 1.125 1.112 0.01000

Table 7.2: Optimized tendon slack length scales from different experimental sessions,
S1–S5, with several days in-between, with average values, ¯st

i , and standard deviations,
σst

i
: an obvious consistency can be seen. The scales are dimensionless.

rectus femoris and the semimembranosus. Since the minima lie in very narrow valleys
of the geometrȳσ(st) curves, this is very important. Table 7.3 shows the EMG-related
parameters of the rectus femoris of those sessions. Comparing the standard deviations
to the deviations of the geometry parameters, in relation tothe corresponding average
values, reveals that the geometry calibration is insensitive to variances in the EMG
measurements. This increases the trust in the model and confirms that the geometry
needs only to be calibrated once for every subject.

S1 S2 S3 S4 S5 avg. std. dev.
A -0.750 -0.606 -1.901 -1.750 -0.837 -1.169 0.607
Fm

o [N] 593 776 516 604 735 645 107
R[V] 0.026 0.024 0.028 0.037 0.027 0.028 0.0051

Table 7.3: EMG-related parameters of the rectus femoris with average values and
standard deviations for the sessions. The differences of the parameters are large be-
tween sessions, taking into account the circumstances described in section 3.3. The
maximum force,Fm

o , is subject to large variance because the experiments have been
performed with submaximal force. The shape,A, is dimensionless.
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7.1 Calibration

7.1.2 EMG-to-Force Calibration

The EMG-to-force calibration was performed after geometryparameters had been ob-
tained from the geometry calibration. It should be kept in mind that the EMG-related
parameters are subject to change from session to session.

Calibration of the EMG-related parameters has been performed with the exponen-
tial activation function,aexp, and the piecewise activation function,apw for every mus-
cle. Table 7.4 shows the resulting parameters and error values. As can be seen, the
piecewise activation functions performs always worse. Forall further experiments the
exponential activation has been used.

The actual functions corresponding to the calibrated parameters are plotted in fig-
ure 7.5, together with all entries of the tables of each muscle (compare to figures 7.2
and 7.3). As can be seen for the rectus femoris and semitendinosus the curves have
a force close to zero for EMG values far greater than zero. It might be feasible to
calibrate the EMG offset,uo, of every muscle instead of measuring it when the muscle
is relaxed. In that case, the curves would be shifted to the left, and the curvature could
be better approximated. On the other hand this small error might be corrected through
a different distribution of the reference torque among the muscles.

A R[V] Fm
o [N] E(aexp) a0[V] m[N

V ] E(apw)
rect. fem. -0.837 0.027 735 14003.90 0.491 26.46 91269.79
vast. med. -2.066 0.045 1225 7332.17 0.483 16.42 21465.34
vast. lat. -2.174 0.062 1419 14316.69 0.417 13.32 33614.27
semimem. -2.083 0.049 1218 38159.13 0.573 12.58 173250.67
semiten. -3.158 0.032 251 9949.73 0.942 2.58 147191.09
bic. fem. -2.001 0.041 852 19856.89 0.611 13.73 158541.31

Table 7.4: Calibrated parameters of the muscles from session S5: shapeA (dimension-
less) of the activation function,a(u), expected maximum postprocessed EMG signal,
R, and maximum isometric force,Fm

o . For the piecewise activation there are two ad-
ditional parameters,a0 (EMG signal at transition), and the slope of the linear portion,
m.

Beside the shape of the EMG-to-force functions, the maximumisometric forces
are important parameters. Comparing those values to the data collected in [DLH+90]
from various sources, as shown in table 7.5, reveals interesting similarities. It has
to be kept in mind that the isometric trials for the calibration have been performed
with submaximal force, but the muscles in the model also takeover certain shares
of muscles which are not included in the model but are measured through the force
sensor.

Comparing the forces to values from the literature is performed here only to check
if the order of magnitude is correct. Fortunately, this is the fact. Also, the order of
the strength is consistent: Weak muscles in literature correspond to muscles with low
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Figure 7.5: Calibration of the EMG-to-force parameters: The diagrams show the en-
tries of all tables of the particular muscle, together with the interpolated EMG-to-force
function (solid line). The muscles are from top left to bottom right: rectus femoris, vas-
tus medialis, vastus lateralis, semimembranosus, semitendinosus, and biceps femoris.
As can be seen for the rectus femoris and semitendinosus, introduction of an offset
parameter could improve the calibration.

forces of this work, and likewise for the stronger muscles, as could be expected from
the torque distribution based on the %PCA values.

It has to be kept in mind, that the most important goal is to make the model con-
sistent in itself and the measurement setup through parameter optimization, but not
necessarily to any external values.

7.1.3 Model Adaptation and Prediction

In this section the adaptation of the model through the calibration is examined, and if
the calibrated model can be used for predicting the resulting knee joint torque for new
data that was not used during calibration.

Model Adaptation The adaptation of the model can be evaluated with the torque
errorEtorque, which is the average of the difference of the torqueTEMG, based on EMG
evaluation, and the reference torque,TR, based on the force sensor, for all measured
values,
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7.1 Calibration

Fm
o [N] Fm

o [N]
rectus femoris 735 780
vastus medialis 1225 1294
vastus lateralis 1419 1871
vastus intermedius 1365
semimembranosus 1218 1030
semitendinosus 251 330
biceps femoris 852 717, 402
gastrocnemius 1113
sartorius 104
gracilis 108

Table 7.5: Maximum muscles forces from literature compared to calibrated values.
Left column: results of the calibration, right column: datataken from [DLH+90]. The
biceps femoris is split into the long head and short head in the values from literature.
Fields left blank indicate muscles which have not been modelled explicitly.

Etorque=
1
D

D−1

∑
t=0

(

TR,t −TEMG,t
)

, (7.2)

whereD is the number of samples of the trial.
Table 7.6 shows the average torque error of each trial. All those trials have also been

used for the previous geometry and EMG-to-force calibration. The lower the torque
error, the more accurate the model can compute the knee torque based on the EMG
signals.

Two typical replays of isometric trials are shown in figure 7.6 (trial E4) and 7.7
(trial F2). The EMG signals have been filtered with a lowpass cut-off frequency of
1.6Hz. The upper diagram of each figure shows the reference torque computed from
the force sensor readings together with the predicted torque based on the EMG-to-force
computation. The middle and bottom diagrams of each figure show the contributions
of the individual muscles to the total torque computed in thetop diagram. In figure 7.6
it can especially well be seen between 12s< t <16s how the different muscle activation
begin and end at different times but overlay to a smooth torque output which resembles
the reference curve strongly. At other times of the same curve, this resemblance is not
so close: For example, between 8s< t <12s the reference output is almost the same
as during the contraction mentioned before, but the fitting of the prediction curve is
not so accurate. Slightly lower activations of all extensormuscles sum up to torques
lower than the reference values. This can also be seen at other times of the presented
curve. Throughout the trial, all flexor muscles show a constant muscle tone slightly
above the relaxed state (the activation of the relaxed statewas determined as the offset
and has been eliminated). Thus, norecordedflexor activity influences the result of the
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Trial Ē[Nm] Emax[Nm] RT [Nm]
E0 9.0 25.8 50.0
E1 10.8 35.0 61.8
E2 11.5 34.2 61.8
E3 7.0 25.2 58.3
E4 6.1 12.1 64.4
F0 5.4 18.8 38.2
F1 9.3 20.7 56.1
F2 7.9 24.6 57.7
F3 8.4 21.1 57.9
F4 5.9 19.5 52.5
F5 6.0 19.3 45.9

Table 7.6: The table shows the adaptation of the model to the individualtrials. Ē is
the average error of the torque prediction for the trial, andEmax is the maximum error
of the same trial.RT is the torque range covered during this trial.

trial. But why is the extensor torque not predicted appropriately atall times? There
are many possible reasons for this. Some of them are:

• The EMG-to-force functions are inaccurate, and the muscleactivation pattern
is slightly different: The recorded muscles produce more force than predicted,
and the increase of muscle activation in some muscles (whileothers are a little
less active) is not appropriately reflected through the EMG-to-force functions
because the curvature is too high (or vice versa).

• The extrapolation of the activity measured by a single electrode to the whole
muscle could result in an inaccurate force prediction. Thisis especially true
for multi-headed muscles, like the biceps femoris, which branches into a "short
head" and a "long head".

• An extensor muscle that is not recorded can contribute the torque that was not
predicted at certain times. This cannot be investigated with non-invasive meth-
ods.

Unfortunately, the main reason cannot be determined with the experimental setup.
But it can also be a combination of all factors mentioned. It must be stated, that
prediction errors in this order can occur. It will be discussed in later sections, if the
resulting system behavior is negatively influenced.

During the trial F2, presented in figure 7.7, other interesting artifacts can be noticed.
First, cocontraction of the flexor and extensor muscles can be seen: During the activa-
tion of the flexor muscle group that produces the main torque,the extensors are also
activated. But since this is taken into account by the calibration, the predicted torque
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Figure 7.6: Replay of the trial E4 with isometric extensor activation. The top diagram
shows the reference torque plotted against time as calculated from the force sensor
and knee angle, together with the predicted torque, based onthe evaluation of the
EMG signals and the knee and hip angle. The middle and bottom diagrams show
the individual contributions of the muscles to the prediction curve from the top-most
diagram.
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Figure 7.7: Replay of trial F2 with isometric flexor activation. The top diagram shows
the reference torque plotted against time as calculated from the force sensor and knee
angle, together with the predicted torque, based on the evaluation of the EMG signals
and the knee and hip angle. The middle and bottom diagrams show the individual
contributions of the muscles to the prediction curve from the top-most diagram.
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during the increase of muscle force is predicted appropriately. But during decrease of
the muscle force it can be seen that the predicted torque drops faster than the refer-
ence torque. This is even amplified through the longer lasting extensor activity. The
question again is: Why is this behavior not predicted? This artifact appears often in
measurements, especially for the flexor muscles, and is not aspecial case. At first,
on may attribute this error to the neglected activation dynamics that is reported in, for
example [ZW90]. But in the presented extensor measurement,and some trials with
different joint angles for the flexor muscles, this effect isnot visible. Thus, it is more
likely to be the effect of unmodeled muscles which are especially active at certain joint
angles. Since an obvious early decrease of flexor muscle activity can be noticed, it can
be assumed that this muscle is slightly longer active than the others.

The adaptation errors for the different isometric trials are summarized in table 7.6.
The values used for computation of the torque errors are onlytaken at times when the
absolute value of the reference torque after elimination ofthe gravity offset was above
5Nm to avoid sugarcoating the errors during muscle inactivity.

Model Prediction We have seen that the model can adapt to the operator for given
trials. But in real environments, the EMG curves that are evaluated are not known in
advance and cannot be used during calibration. The system behavior with previously
unused data has to be investigated.

Since the experimental setup only allows isometric trials when a reference torque
needs to be determined, the prediction error was again performed in an upright sitting
position. The knee angle was flexed to−45◦, and both, extensor and flexor muscles,
have been activated in a random pattern, as shown in figure 7.8. Especially of notice is
the cocontraction at points of transitions between activation of the flexor and extensor
group, and vice versa, as for example, att ≈ 21.5s.

As can be seen in table 7.7, the average prediction errors andmaximum torque errors
are similar to the adaptation errors in table 7.6. Again the error was only determined
whenever the absolute value of the reference torque was above the threshold.

Angle [◦] Ē[Nm] Emax[Nm] RT [Nm]
-45 6.3 20.4 119.9

Table 7.7: The table shows the errors that occurred during the prediction of torques
not previously used during calibration.̄E is the average error of the torque prediction,
andEmax is the maximum error.RT is the torque range covered during this trial.

The example session presented here is not a special case. It was selected, because
it features typical results of experimental sessions. It can be concluded that the model
can predict the resulting knee torques based on EMG signals from the operator to a
certain degree.

But some inherent problems remain which have been mentionedabove. Further-
more, the unsteadiness of the EMG signal during contractions poses a potential prob-
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Figure 7.8: Arbitrary isometric muscle contraction pattern of the extensor and flexor
groups at−45◦. In the top diagram the reference torque based on the force sensor mea-
surement is plotted together with the torque based on the EMG-to-force computation
against time. The middle and bottom diagrams show the contributions of the individu-
al muscles. The EMG signals are lowpass-filtered with 4Hz to show the difference in
smoothness compared to figures 7.6 and 7.7. A good correlation of the reference and
prediction curves can be seen.
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lem: If the system reacts too quickly to those, it can vibratein an undesired manner.
This can obviously be suppressed by decreasing the lowpass cut-off frequency during
EMG signal postprocessing. But since the frequency of thoseoscillations in the EMG
signal are low, this would increase the latency of the systemsubstantially (in the or-
der of 500msand more). The experiments presented in the following section reveal if
those inaccuracies are a real problem for controlling the exoskeleton.

7.2 Torque Controlled Experiments

In this section, experiments are presented with force support from the exoskeleton. As
was motivated in the introduction, a focus is put on movements of everyday life, which
can be substantially supported by the exoskeleton. That is,where the knee flexion and
extension is important and requires larger torques.

Each movement is discussed in a separate section, with a focus on system be-
havior and human-machine interaction. For the purpose of this work, the discussed
movements are: free motion with the leg (section 7.2.2), sit-to-stand movement (sec-
tion 7.2.3), stair climbing (section 7.2.4), walking (section 7.2.5), and an arbitrary
combination of the movements (section 7.2.6).

Performance evaluation of the system during the supported movements is difficult.
The following section 7.2.1 explains the methods applied here.

7.2.1 Methods of Performance Evaluation

It is very hard to evaluate the exoskeleton system with an objective criterion in a real
world environment. In the context presented here, as a poweramplifier, a general de-
mand is to support the desired movement with a substantial torque while still allowing
the operator full control over the movement.

Quantifying the performance regarding this demand is not possible immediately:
First, the desired movement is not readily available to compare the resulting movement
to. Only the task is known, but not the exact desired trajectory. And second, since the
human is in the control loop, and full direct control is allowed, the outcome of large
force support depends very much on the adaptability of the operator. Since the healthy
operator usually has a muscle activation pattern learned that allows to perform the task
without the support, he or she has to adapt to the external support, and decrease the
own force contribution appropriately, as long as no additional load is carried. Both
force sources, human and exoskeleton, have to work in cooperation to perform the
desired movement. If the operator feels unwell because of the force produced by the
exoskeleton, he or she cannot take full advantage of the support: the actuation rather
disrupts the movement performed by the operator, and the operator will get tensed
rather than relaxed.

In this work, the performance is evaluated with the following scheme: The resulting
knee angle trajectories with various support ratios plotted against time are compared to
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the trajectory without force support during which the exoskeleton evades the leg. This
is not performed numerically, since durations of the different phases of the movement
can be different, distorting the results. Scaling parts of the movement in time would
distort the relationship between acceleration of body segments and muscle forces, due
to inertia, also leading to a wrong evaluation.

Instead, the trajectories are compared for the general shape, and it is searched for
unusual dents in the trajectories and corresponding muscleactivations. Those dents
are an indicator for unusual muscle activation which is amplified by the exoskeleton.
These rapid changes in the muscle activation pattern indicate that the operator is sur-
prised by the external force, or feels unwell and tries to counteract the force produced
by the exoskeleton.

In the diagrams of the experiments the support of the exoskeleton is shown as a re-
sult of the measured torque of the actuation. It isassumedthat this additional torque
is helpful for the movement, because it is brought into the system and cannot simply
vanish, and it acts in the same direction as the torque produced by the muscles, but it
could, in theory, be counteracted by muscles which are not recorded. But the muscle
activations of the recorded muscles are shown to be lower than without support. This
seems to support the theory that the contribution of the exoskeleton relieves the opera-
tor of some torque. But again: also this reduced muscle activation could be taken over
by muscles which are not recorded. Only a subjective report can reveal if the muscle
activity is very unusual or feels awkward.

Experiments can be performed which measure the energy consumption of the whole
body directly, but this was not performed. But also if the exoskeleton transferred load
to other muscles not reducing the overall effort of the human, the exoskeleton can
still be helpful, since those muscles may be more capable of performing a task, for
example, the unsupported leg for motor impaired people.

As a conclusion to the above argumentation, every experiment is commented with
a subjective impression of the operator. Although during the course of this project
many experiments with force support have been performed, the operator can still be
regarded as a novice compared to the intended everyday usage, but with some trust in
the exoskeleton and control system.

7.2.2 Free Motion

This experiment is mainly presented here to justify the needof taking into account the
muscle geometry to improve the consistency of the EMG-to-force relationship, which
is realized in this work through the geometry model of the muscles.

The experiment was performed as follows: The operator is sitting on a chair with
both feet on the ground and a knee joint angle of approximately −90◦. Three markers
are fastened to a vertical bar which is located 70cm in front of the chair, with distances
of 20cm, 40cm, and 60cm above the floor. The task is to raise thesupported leg, touch
the lowest marker, flex the knee, extend it to touch the middlemarker, flex the knee,
extend it again to touch the top marker, and put down the leg. This task also involves
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flexing the hip joint. It was chosen because it is a very simplemovement, but requiring
target oriented leg movement as during arrangement of the legs prior to standing up or
positioning the foot to step over an obstacle. The task has been performed with support
ratios of 0.00, 0.25, 0.50, 0.75, and 1.00. The lowpass frequency of the EMG filtering
was set to 1.6Hz, which is motivated in section 7.2.3. The hipangle of the model was
set to 90◦. During the first trial, the complete calibrated model was used to verify if
the task could be fulfilled with the system at all, and to a satisfying accuracy. The
second trial was performed without taking into account the muscle geometry during
computation of the support. This allowed investigation of the overall effect of the
geometry model on the performance of the system for this task. Results from the
experiments are shown in figure 7.9. All diagrams show the knee joint angle, the
torque contribution of the operator estimated from the EMG signals, and the torque
contribution of the actuation of the exoskeleton. The left column contains diagrams
from the trial with the complete model, the right column contains diagrams where the
geometry model of the muscle was omitted.

In all diagrams the knee joint angle starts at around−110◦, when the foot of the
supported leg is on the ground. After that, the hip is flexed and the knee is extended
to touch the lowest marker. This is indicated by the first maximum of the knee joint
trajectory. After that the knee is flexed and the leg is further raised, before the knee is
extended again to touch the second marker, as indicated by the second maximum. This
is repeated for the third marker before the foot is put down onthe ground again.

In the top row the support ratio is set to zero: The actuator isnot contributing any
torque to the movement, minimizing the interaction force between the operator and the
exoskeleton, as is shown by the torque curve of the exoskeleton being zero throughout
the whole movement. In the bottom row the support ratio is setto 1.00, and the actuator
torque is following the estimated torque of the operator, indicating that the actuation
is able to produce the required torque during all phases of the movement. In between
the top row and the bottom row, the support ratio is graduallyincreased, as can be
seen by the increased torque contributions of the exoskeleton. As was desired, the
muscle activity is reduced as a reaction to the increased support: The operator was
benefitting from the support and did reduce his own muscle activations. But with
increasing support, the performed trajectories are getting wavy, because the operator
is not used to the support from the exoskeleton and has to adapt to it.

When comparing the knee angle trajectories of the corresponding diagrams from the
two columns, it can be noticed that the quality of the performed movement is varying
greatly between the trial with the complete model, shown in the left column, and the
trial without the muscle geometry, shown in the right column. During trials without
the geometry model, the torque is overestimated as explained in section 7.1.1 when the
knee is extended before touching the marker. This leads to a behavior that is not easy
to predict by the operator, let alone being taken into account unconsciously, resulting
in a very unsteady muscle activation. This in turn leads to anunsteady support, and a
ragged knee joint trajectory.

The subjective feeling during the experiment was that the task could be easily per-
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Figure 7.9: Free movement with the actuated leg. The diagrams show the knee angle,
the torque contribution of the operator, and the torque support of the exoskeleton plot-
ted against time. The support ratio was increased from top tobottom. Left: task with
the complete calibrated model. Right: task with the muscle geometry model excluded.
The muscle activity is reduced with increasing support in both trials, but the task can-
not be performed smoothly without the geometry model, as canbe seen by the dents
in the knee angle trajectory in the right column. The torque estimation is poor, and the
behavior of the system is hard to predict for the human locomotor system.
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formed with the geometry model included. But with higher support ratios, a little more
mental effort was required to perform the movement smoothly. Without the model, the
mental effort was greater, and even when concentrating veryhard on performing the
task smoothly, this was not possible, especially with high support ratios. The actual
effect of the increased mental effort on the joint trajectory was not investigated in more
detail.

The results of this experiment justify the inclusion of a model which takes into
account the geometry of the muscles to improve the EMG-to-force prediction.

7.2.3 Sit-to-stand Movement

This experiment is performed similar to the every-day movement when getting up from
a chair, except that some additional constraints have been applied to make the results
more comparable. This movement has been selected because ofits relevance to daily
activity, the possibility of the system to add a larger support, and because the system
behavior can be tested for a relatively simple movement. It is used to determine a
feasible lowpass frequency for the EMG signal postprocessing, which has a direct and
strong effect on the support computation and the resulting behavior of the actuation.

The movement was started from an upright sitting position. Getting up was per-
formed without the arms holding on to anything, like arm rests. Both feet were placed
side by side on the ground, so that the legs were parallel during the whole movement.
It was tried to put the same weight on both feet during each trial, to minimize the effect
of different ground reaction forces on the experiments. Themovement was performed
as naturally as possible (leaning forward, using the arms for balancing), and as similar
as possible, to reduce the effect of different postures on the required muscle activa-
tions. It can also be performed with support from the arm rests, or the feet can be
placed differently. But by applying some constraints, the results are more comparable.
The movement was performed a little slower than normal, as could be expected from
elderly or disabled people being in need of support, becauseof the limited velocity of
the actuator. The movement was performed with support ratios of 0.00, 0.25, 0.50,
0.75 and 1.00. The lowpass cut-off frequency for the EMG signal postprocessing was
set in the first series of trials to 1.6Hz, in the second seriesto 4.0Hz. Results of the
experiments are shown in figure 7.10. The first series of trials is shown in the left col-
umn, the second series in the right column. The diagrams showthe estimated torque
contribution of the operator based on the EMG signal evaluation, the torque contribu-
tion of the exoskeleton, calculated through the actuator force, and the resulting knee
joint trajectory.

During the trials shown in the top diagrams the support ratiowas set to zero, indi-
cating that the exoskeleton did neither support nor hinder the movement. This can be
verified by the force curve being zero throughout the whole movement. The support
ratio has been increased in 0.25-steps between the trials from the top to the bottom,
as can be verified by comparing the contribution of the exoskeleton to the estimated
contribution of the operator for the various trials.
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Figure 7.10: Sit-to-stand movement with support ratios of 0.00, 0.25, 0.50, 0.75, and
1.00. The torque contribution of the operator and the exoskeleton, and the resulting
knee angle trajectory are shown. Left column: with a lowpasscut-off frequency for
the EMG postprocessing of 1.6Hz. Right column: the same witha cut-off frequency
of 4.0Hz. Muscle activation could be reduced with larger support, but oscillations can
be seen in the diagrams of the right column, indicating that the operator overreacts and
feels uncomfortable.
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7.2 Torque Controlled Experiments

It can be seen that the shape of the knee angle trajectory is similar over all trials,
indicating that the desired movement could be performed successfully, although with
differences in quality: The joint trajectories in the rightcolumn show obvious bumps
with increasing support. The movement has not been performed very smoothly. This
originates from the waviness of the EMG signals. After the lowpass filtering during
postprocessing, no other filters are applied to further smoothen the signal. A typical
waviness of the postprocessed signal of the unaffected movement can be seen in dia-
gram (2a) of figure 7.10. Since the support is directly depending on the prediction of
the operator’s contribution, the resulting support shown in diagrams (2c)-(2e) is very
unsteady. The mechanical coupling of the exoskeleton with the operator leads to a
feedback of this unsteady support, which he tried to compensate unconsciously. Un-
fortunately this further increased the waviness of the operator’s contribution resulting
in an undesired oscillation. Those oscillations are so quick that the actuator cannot
always produce the required torques, as is most apparent in diagram (2e).

This effect of the feedback can also be noticed in the first series of trials in the left
column: At first the operator is activating his muscles very strongly, out of long-learned
experience to a degree that is required if no external support is given. This leads to
a very steep inclination of the knee trajectory in the initial phase of the movement
compared to the trajectory without support in diagram (1a).As soon as the locomotor
system recognizes that the resulting movement is faster than expected and desired, the
muscle activation is reduced to slow down the movement. Since this directly results
in a decreased support which is not taken into account by the locomotor system, the
movement is slower than desired which is countered by a following increase of the
muscle activation. The resulting knee joint trajectory shows some small bumps as a
result of this untrained interaction between the human and the exoskeleton. It is best
seen in diagram (1c) and (1e). This interaction is performedwithout conscious effort,
and cannot be simply suppressed. Additional training may reduce this effect. But with
increased support from the exoskeleton, the operator couldreduce the activation of his
muscles, thus benefitting from the support.

The subjective feeling during the first trial was very positive. Although the feedback
system of the human body is very sensitive to the accelerations which lead to the bumps
in the knee joint trajectories which can be felt, but they do not cause a strong distrust
in the system because they are small enough. In fact also without the support the
trajectories are not always very smooth because of the activation pattern the operator
is using. But this results in a feedback as expected, not causing a bad feeling. During
the second series however, the accelerations created by theinteraction between the
operator and the exoskeleton have been so large and unexpected, that the trust in the
system was very low. It was very hard to not unintentionally put all the weight on the
unsupported leg to reduce the oscillations by reducing the required muscle activity.
But the effect could not be omitted completely, leading to a lower muscle activation
during the second series of trials.

Results of the experiment imply that cut-off frequencies lower than 4.0Hz improve
the system behavior significantly. Of course a reduction of the frequency causes a

101



7 Experiments

higher latency of the system, which can be a disadvantage formovements that require
quicker responses. But for the experiments presented here,a cut-off frequency of
1.6Hz yields good results. It was experimentally determined, but further research may
bring forward other values.

Stand-to-sit Movement

The stand-to-sit movement is investigated here, because itis also a very common
movement and the interaction between the human and the system is very important.

Results are presented in figure 7.11 for support ratios of 0.00, 0.25, 0.50, 0.75,
and 1.00. As for this and all following experiments, the lowpass frequency is set to
1.6Hz. The resulting curves have similar artifacts like thecurves presented for the
sit-to-stand movement: The estimated torque contributionof the operator is reduced
with increased support from the exoskeleton. But the subjective feeling is different:
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Figure 7.11: Stand-to-sit movement with support ratios of 0.00, 0.25, 0.50, 0.75, and
1.00. The torque contribution of the operator and the exoskeleton, and the resulting
knee angle trajectory are shown. As expected, the muscle activation is reduced with
increased support.

Although the movement itself is smooth, it is hard to reduce the muscle activation and
trust the exoskeleton to take over the remaining torque. Thesubject seemed to perform
the movement much more carefully than the sit-to-stand movement.
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7.2 Torque Controlled Experiments

7.2.4 Stair Climbing

This experiment is performed similar to the daily activity of climbing a stair without
using a handrail or similar support. This movement is very important because of its
relevance to the daily activities, and the cooperation of the human with the machine can
be analyzed in phases where higher support from the exoskeleton can be contributed,
as well as smaller forces have to be applied to allow positioning the foot over the next
step. The experiment involved climbing four steps, with thesupported leg initiating
the movement. The last step consisted of putting down the foot of the support leg
beside the other foot on the platform. Again, this experiment is performed slower than
normal, as could be expected from elderly or disabled persons. The experiment shows
the advantages of the approach, allowing to initiate and stop the movement even with
the supported leg. No handrail for support has been used to make the results more
comparable, but if desired, it could be used by the operator.The support curves and
knee joint trajectories from the experiments are shown in figure 7.12.

The meaning of the knee angle trajectories is explained for the unsupported move-
ment in the top row: Att < 2.0s the subject is standing in front of the stair, both feet
side-by-side in a natural fashion. When the knee curve starts to fall, the foot is raised
from the ground through flexion in the knee and hip joints. During the following min-
imum at t ≈ 3.5s the foot is at its highest point and brought over the first step. At
t ≈ 4.1s the foot is put onto the step, and the operator is leaning forward to bring his
weight over the leading foot. The extensor muscles start to contract to push the subject
up the stair. During the following extension of the knee, theunsupported leg is raised
and put onto the second step (att ≈ 6.0s). The weight is moved over this foot and the
following knee flexion indicates that the third step is climbed with the supported leg,
in a similar fashion as the first step. The fourth step is performed with the unsupported
leg, and the fifth step begins with a flexion att ≈ 9.5s to raise the leg and to bring down
the foot onto the platform beside the other foot att > 10.5s. At t > 11.8s the subject
is standing on the platform.

The strongest muscle activation is found during the push-upphases where the ex-
tensor muscles produce large forces. The flexor muscles are very active when the foot
is lifted from the ground through knee flexion and is brought above the next step. No-
tice that for the knee flexion during the first step almost no flexor force is required.
The flexion is a result of gravity acting on the shank while thethigh is raised through
hip flexion. The other two flexions have to be performed actively through the flexor
muscles while the thigh is not raised very much to avoid tripping over the next step.

From the top row to the bottom row the support ratio is increased in steps of 0.25.
As can be seen clearly, the support the exoskeleton contributes to the movement grad-
ually increases accordingly. For lower ratios this supportcan be integrated into the
movement, and the muscle activity is reduced. Unfortunately, for support ratios of
0.75 and 1.00 this support cannot be utilized comfortably. The joint angle trajectories
show many bumps, for example, att ≈ 3.0s andt ≈ 7.5s in the bottom diagram. Those
bumps are a result of small flexor and extensor activities which can also be seen in
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Figure 7.12: Stair climbing experiment with support ratios of 0.00, 0.25, 0.50, 0.75,
and 1.00 (top to bottom). The knee angle, and the torque of theoperator and the exo-
skeleton are plotted against time. The operator’s contribution is decreased in response
to the support, but high support ratios result in dents in theknee joint trajectory.
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the other diagrams, but are amplified here. During those phases, the supported leg
has no floor contact and small variations in the joint torqueslead to relatively large
accelerations. The same variations have less effect duringphases with floor contact.

During the trials with lower support ratios, the task of climbing the stair could be
performed easily and the operator felt safe. With higher support ratios the confidence
in the system was reduced and the support could not be integrated into the movement
easily, although the muscle activity is slightly reduced. But for the cost of feeling
uneasy during this movement.

Small and short muscle activity seems to be hard to adapt spontaneously to external
influences, like the support of the exoskeleton. Amplification of those stereotyped pat-
terns results in undesired effects described above. Duringpush-up phase, this support
could be integrated more easily into the movement, and the muscle activity could be
reduced. It seems as if the locomotor system is used to modulating the muscle activity
during push-up phase because of different loads a human carries every day. The phase
in which the leg is freely moved without external contact rarely needs to be adapted.

7.2.5 Walking

This task was chosen because of its relevance to the daily activities. But it is hard
to verify or analyze the performance of the system with it. The reason for this are
the small muscle forces that are required during walking, especially from muscles
spanning the knee: During the swing-phase of the free leg, for example, the knee
extension is mostly a result of the hip rotation and flexion.

The experiment was performed with support ratios of 0.00, 0.25, 0.50, 0.75, and
1.00. The resulting knee joint trajectories, and the contribution of the operator and
the exoskeleton are shown in figure 7.13. At the beginning of all trials, the subject is
standing upright. The movement is initiated and terminatedwith the supported leg,
which can be seen by the smaller flexion at the beginning, and at the ending of every
trial. In between the repetitive pattern of walking is shown. During phases where
the knee angle is close to zero, the leg is almost straight andhas floor contact while
the unsupport leg is moved forward. At the end of this phase, the ankle performs the
forward propulsion closely followed by the steep decrease of the knee angle indicating
the beginning of the swing phase. The foot is loosing ground contact, and the supported
leg is moved forward. After the free foot has passed the foot with ground contact, the
knee is extended again, leading to an increase of the knee joint angles. The foot is put
on the ground again, and the gait cycle is repeated.

Only during the knee flexion a larger negative torque is produced which is support-
ed. Aside from that, muscle activity is very small, comparedto, for example, stair
climbing, and the output of the torque estimation for each muscle is almost zero.

Thus, the exoskeleton is following the movement of the leg passively for most of
the time, not hindering the movement, although jitter of theactuation of approximate-
ly ±2Nm occurred. The subjective feeling during this task was very relaxed, although
the gait was affected for higher support ratios: It was noticed that the actuator produced
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Figure 7.13: Walking experiment for support ratios of 0.00, 0.25, 0.50, 0.75, and
1.00. The knee angle and contributions of the operator and the exoskeleton are plotted
against time. The recorded muscles produce very little force during walking, but still,
minor activity affects the resulting knee trajectory for higher support ratios.
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7.3 Discussion

a torque to extend the leg, which felt a little unnatural. Forhigher support ratios, a con-
stant amount of extensor torque is amplified, which can be noticed in the diagrams for
support ratios of 0.50 and over, resulting in a torque offsetof approximately 2Nm for
the support ratio of 1.00. This is a result of permanent smallactivity of the extensor
muscles during this movement. During calibration, an offset for all muscles in a re-
laxed state had already been determined and eliminated. It has to be investigated if (1)
this increased activity actually produces a torque that should be amplified, (2) during
activities like walking, muscles are always a little activewithout producing measurable
torque, or (3) it is a model error that needs to be corrected.

But it is known that, for example, during and after heel strike when the leading foot
touches the ground significant muscle force is required to keep the leg extended and to
be able to put weight onto the foot throughout the single support phase. In those phases
muscles of the flexor and extensor groups are activated at thesame time, increasing the
joint stiffness. In our algorithms, the opposing torques ofthe two muscle groups partly
cancel out, but stiffness is not increased.

7.2.6 Movement Combination

The last experiment is used to show that natural transitionsbetween individual move-
ments, which have been presented in the previous sections, are possible. The experi-
ment was performed with a support ratio of 0.50. It begins with the subject sitting on
a chair. He (1) stands up, (2) walks three steps with each foot, (3) climbs four steps of
a stair, (4) turns on the platform, (5) descends the stair, (6) walks three steps back to
the chair, (7) turns, (8) and sits down. Again, this was performed a little slower than
normal. Results of this experiment are shown in figure 7.14, where the numbers of
the individual movements are placed at each transition.

As can be seen, the transitions between the movements appearsmoothly, and sig-
nificant support is contributed during the movements that require large muscle forces:
sit-to-stand, climbing the stairs up and down, and stand-to-sit movements. In-between
the walking can be performed in a quite normal fashion, but without the exoskeleton
providing a significant amount of torque.

7.3 Discussion

In this chapter the implemented model has been justified through analysis during cal-
ibration, investigated regarding its torque prediction for isometric muscle contractions
under different joint angles, and the application of the model for computing the sup-
porting torque of the exoskeleton in experiments with the exoskeleton in common
movements.

It has been shown that the implemented properties of the biomechanical model al-
low a consistent torque prediction based on the EMG signals.But still, a certain error
remains. The torque controlled experiments showed that theerror was small enough
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Figure 7.14: Combination of investigated movements. The movement was performed
with support ratio of 0.50. Top: knee joint trajectory. Bottom: contributions of the
operator and the exoskeleton. The markers indicate the beginning of the movement
and the transitions: (1) standing up, (2) walking, (3) stairclimbing, (4) turning on the
platform, (5) climbing downstairs, (6) walking, (7) turning, (8) sitting down.

to allow the exoskeleton to add a significant support to the movement. The system
behavior was so predictable by the untrained operator that he could take the external
support into account and reduce his own muscle activations while performing the de-
sired movement. During movements which require large jointtorques, a significant
amount of torque can be taken over by the exoskeleton, although for high support ra-
tios, the interaction between the exoskeleton and the operator became problematic. In
these cases the wavy shape of muscle activation and the resulting joint trajectory is
an indication for the operator not feeling comfortable. Theoperator could not benefit
completely from the large support and was overreacting to the feedback.

The oscillations may be reduced if the latency of the system could be reduced while
still having a similar flat EMG activation envelope. Unfortunately this is a contradic-
tion which cannot be solved easily.

The overreaction of the human to the support was performed unconsciously and
could not be immediately suppressed with increased concentration on the task. It
seems as if the lower levels of the locomotor system were controlling those responses,
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7.3 Discussion

but additional training with the exoskeleton may produce more suitable reactions to
higher support from the device.

The subjective impression of all experiments with significant torque contribution
and a smooth movement was that the motion felt quite natural,but the actual amount
of support became especially evident after it was turned off, and the full required torque
had to be produced by the subject himself again. After performing several stair climb-
ing experiments, the operator seemed not to notice the support anymore. But after the
support was turned off and the stair was climbed once more, itbecame obvious how
much the exoskeleton did in fact contribute.
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8 Miscellaneous Investigations on
Body Models

Besides the algorithms presented in chapter 4 and 5, other algorithms for control and
calibration of the exoskeleton have been investigated. Those algorithms are based on
systems of rigid bodies, which model the operator with the exoskeleton in the environ-
ment.

In this chapter two algorithms and results are summarized, which have been devel-
oped during the course of this project. They show different paths of investigation that
have been followed, but have not been included in the final system as described in
chapter 4. The findings are of interest, since they illustrate general problems concern-
ing the simulation and prediction of movement. Some of thoseproblems could have
been minimized by developing a more complex exoskeleton hardware or an external
measurement setup, which is beyond the scope of this work.

Section 8.1 describes an algorithm which predicts the desired movement based on
simulation of a dynamic body model, and section 8.2 describes a simplified dynamic
body model tailored to a specific task: It is explicitly used during calibration of the
knee extensor muscles with sit-to-stand movements.

8.1 Motion Prediction with a Dynamic Body Model

This approach was in fact the first approach to control the exoskeleton, prior to the
torque control system.

The basic idea of the dynamic model approach is to simulate the behavior of a
simplified dynamic rigid body model of the human body. The motion simulated for
a small timestep ahead through forward dynamics computation is interpreted as the
intended movement of the operator, and is executed with the actuator. The movement
of the model is a result of muscle forces acting on different parts of the model as well
as some selected external forces. The control system includes dynamic equations to
simulate the body model and a position controller for the actuator.

This approach is well motivated by the fact that with dynamicequations at hand,
which describe the system behavior, modulation of the jointtorques to control pos-
tural stability as proposed in [KH03a, KH03b] could be integrated easily. Thus, the
exoskeleton could not only be used to amplify the muscle forces of the operator, but
also to help maintain balance during dynamic movements. Initial experiments fusing
those algorithms have been presented in [FKRH04a].
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8 Miscellaneous Investigations on Body Models

But it should be noted that this is more of a theoretical consideration in the context
of this work: To control postural stability it is necessary to actuate more joints than
realized with the exoskeleton presented in this work.

The initial experiments for investigation of joint angle prediction based on the EMG
signals have been performed on the hip joint, a revised version on the knee joint.

The following description is written with emphasize on the knee joint experiments,
but short results for both experiments are presented. The dynamic model approach as
presented here has been published in [FKRH04b,FH05].

The following section 8.1.1 describes the concept and the control system, and sec-
tion 8.1.2 explains the properties and implementation of the dynamic body model used
for the movement prediction. Details of the calibration that are specific to this body
model are described in section 8.1.3, and section 8.1.4 describes the sensor system that
is required in addition to the one presented in section 6.4. Results from experiments
are presented in section 8.1.5, followed by a conclusion in section 8.1.6.

8.1.1 Control System

The control system of the dynamic model approach is organized in two loops which
are connected: The first loop is responsible for computing the intended movement of
the operator with the dynamic body model. It reads the kinematic information of the
operator from the sensors, and computes the joint torques ofall unsupported joints
and the external contact forces through inverse dynamics. With those torques and the
EMG signals the simulation of the dynamic body model is performed through forward
dynamics computation. This yields the desired movement of the operator expressed
through the joint angles (in our cases: hip or knee angles) that have been computed
by the simulation. The simulated joint angle is passed to theinner control loop, which
is responsible for executing the desired movement with the actuator. This concept is
shown in figure 8.1.

8.1.2 Dynamic Body Model

During the design of the dynamic body model, several important aspects have to be
considered:

• The model should be as simple as possible to keep the number of parameters
low. Most of the parameters are subject-specific and have to be identified by
hand.

• All sensors are mounted on the exoskeleton. The accuracy ofthe sensor read-
ings, especially when measuring the current pose, may be very bad, depending
on the pose and motion of the exoskeleton.
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Figure 8.1: The figure shows the data flow within the system. The solid lines show
the flow in normal operation mode, the dotted lines mark additional signals during
calibration.

• It may be possible that some parameters or state variables cannot be measured
directly. The number of those should be kept low, since indirect measurement or
calculation can introduce substantial errors.

The human body model of the simulation is simplified significantly: It consists of
two legs with feet, shanks, thighs, and the torso. The arms and head have not been
modelled. All limbs and the torso are modelled as rigid bodies with a mass distribution
of rectangular parallelepipeds. The limbs are connected with swivel joints that can
rotate in sagittal plane only. Joint friction is not modelled.

Of course this simplified model is not useful for real-life stability computations,
because it is planar, but the reduction of degrees of freedomhelps during first investi-
gations of the approach.

Body masses of the torso, thighs, shanks and feet are calculated as fixed fractions of
the total body weight of the subject. Body dimensions are taken from our subject. All
parameters are listed in appendix C.

The dynamic equations of the model were derived using Kane’sformalism [KL00]
[KL97]

M(q)u̇ = f(q,u)+g(q)T (8.1)

with q = (qr
hip,q

r
knee,q

r
ankle,q

l
hip,q

l
knee,q

l
ankle,qtorso,q

x
pelvis,q

y
pelvis)

T ,

u = q̇ (time derivative in the Newtonian reference frame),

where
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8 Miscellaneous Investigations on Body Models

• q: vector of generalized coordinates, which are the joint angles of the hip, knee,
ankle, and torso (with respect to the reference frame), and coordinates of the
pelvis located in the reference coordinate system,

• u: vector of generalized velocities,

• M (matrix function): specifies mass distribution of the rigidbodies,

• f (vector function): models inertial forces and gravity acting on the system,

• T (vector): takes into account all torques in the joints as a result of the muscle
forces applied:tr

hip, tr
knee, tr

ankle, t l
hip, t l

knee, t l
ankle, together with the external forces

F l
x , F l

y , F r
x , F r

y applied to the left and right ankles inx− andy−direction,Fh
x

applied to the hip, and the torques applied between the reference frame and the
feetT l , Tr (refer to figure 8.2),

• g(q): nonlinear function representing the current system configuration and ge-
ometry.

The set of dynamic equations (8.1) were generated with the symbolic manipulation
tool AUTOLEV1, resulting in a system of nine equations. Those equations express
the relation between the control values, which are the torques and forces acting on
the system, and the resulting movement, which are the accelerations. If the current
kinematic state of the system and all forces and torques acting on the system are known
at any time, solving those equations foru̇ yields the resulting accelerations (forward
dynamics). Double integration of those accelerations simulates the movement of all
rigid bodies of the system over time from a known initial state.

On the other hand, if the accelerationsu̇ are known, the equations can be solved for
the torques and forces which have caused these accelerations (inverse dynamics).

As stated above, the general idea of the control system is to simulate the dynamic
model for a small timestep. The result of the simulation is interpreted as the desired
movement. To be able to perform the forward dynamics computation, all joint torques
and external forces acting on the modelled rigid bodies haveto be known. External
forces could be measured by force sensors between the operator and the environment,
and between the orthosis and the environment. But for the joint torques this is not
possible with non-invasive methods. A different techniquehas to be applied: For all
joints that are not covered by the exoskeleton, and their muscles not being observed
with EMG sensors (in our case: all except the knee), the jointtorque during the last
iteration can be computed by the inverse dynamics of the model, using the kinematic
information recorded with the reference system. The inverse dynamics computation
requires the movements of the joints and of the reference point during the last iteration
which can be determined through angle and floor contact sensors, and calculates the

1Kane Dynamics, Inc., http://www.autolev.com, 2007.
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Figure 8.2: Left: coordinate systems of the reference system and the individual body
segments. Thez-axes are perpendicular to the paper plane pointing towardsthe reader.
The y-axes are perpendicular to thex- andz-axes forming a right-handed coordinate
system. The generalized coordinates rotate around the z-axis of the individual systems.
Right: all joint torques and the modelled external forces with their points of contact.

torques and forces that must have been active to produce the recorded movement: It
solves equations 8.1 for elements ofT.

Those torques and external forces that have been active during the last iteration are
assumed to be constant for the following timestep. This is a rough approximation,
but we have to keep in mind that the movements which are performed with the or-
thosis do not contain large accelerations. For the example movements presented in
figures 8.5, 8.6 and 8.7 this approximation introduces a torque error in the order of 1%
to 3%.

Inverse Dynamics During the inverse dynamics computation, equations 8.1 are
solved for elements ofT. ButT is constructed of more than nine elements, as described
before, because of different external reaction forces thatcan contribute: contact forces
and torques on one or both feet. The elements ofT for which equations 8.1 are solved,
in addition to the six joint torques, depend on the current contact information with the
floor:

• only left foot: F l
x , F l

y andT l ,

• only right foot:F r
x , F r

y andTr ,

• both feet:F l
y ,F r

y andFh
x

(Fh
x is symmetric for both legs and avoids singularities when feet are close to-
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gether; compensates measurement errors, and is only used tobe able to solve the
system of equations algorithmically).

The accelerationṡu needed to perform the inverse dynamic computation are numer-
ically derived from the values of the pose sensors with∆t = 30ms. After this compu-
tation, the contributions of the mentioned torques and forces that result in the current
motion are known.

EMG-to-Force Computing the torque is not possible for the knee joint covered by
the orthosis by inverse dynamics: This joint cannot be movedwithout the actuator
being moved, and as a consequence the inverse dynamic computation could never
predict any movement of this particular knee joint as a result of the operator’s intention.
It would always predict the effect of the actuation, which isnot desired here.

To avoid this, EMG signals of muscles spanning the knee jointare recorded, con-
verted into muscle forces, and subsequently summed in the knee torque. The torque
of the actuated knee joint,tr

knee, is calculated by converting the EMG values to activa-
tions as written in equation 4.2. The resulting muscle force, Fm

i , is derived much more
simple for these experiments by:

Fm
i =

eAiuiR
−1
i −1

eAi −1
·Fm

o,i , (8.2)

with i = 1. . .N (N: number of recorded muscles),ui the post-processed and scaled
EMG value of musclei, andAi the non-linear shape factor.Ai was limited to−10<
A j < 0 in our setup. The scale,Ri , is the maximum recorded post-processed EMG
signal during calibration with the corresponding maximum force,Fm

o,i .
Two muscles have been included into the model, one extensor and one flexor for the

knee joint. The points of origin~Oi, and insertion~Ii of the muscles are fixed and have
been chosen by hand in analogy to human anatomy (refer to appendix C). This muscle
model is not as elaborated as the one described in section 4.3: No waypoints have been
used in this model, and no other muscle properties.

The total knee joint torquetr
knee is calculated as a sum of all force contributions of

the muscles spanning the knee joint with

tr
knee=

N

∑
i=1

(

(

~Ii − ~J
)

×
~Ii − ~Oi

|~Ii − ~Oi |
·Fm

i

)

, (8.3)

where~J is the vector to the knee joint and~Oi and~Ii the points of origin and insertion
of musclei in the reference frame.

Forward Dynamics Now all the joint torques and external forces are known and
the simulation can be performed: Theforward dynamicsblock takes the current system
stateS(t) = (q(t),u(t))T and applies all internal and external torques and forces as
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8.1 Motion Prediction with a Dynamic Body Model

calculated by the inverse dynamics and the joint torque resulting from the EMG signal
evaluation. It then solves equation 8.1 foru̇, and double-integrates the accelerations to
compute the new system state.

8.1.3 Calibration

In this simplified human body model, only the parametersA, R andFm
o (from equa-

tion 8.2) have to be calibrated for all muscles.
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Figure 8.3: Example of the calibration with the inverse dynamic model for the thigh
muscles (stair climbing experiment). The calibrated extensor muscle is a representative
for the extensor group, resulting in a high maximum force output associated with the
muscle. The same is true for the flexor calibration, althoughthe calibration is not
sufficient here: The sum of the flexor forces far exceeds the maximum force calibrated
here.

In the setup here, a movement with the joint that should be calibrated without ex-
ternal contact had to be performed. That is, hip extension and flexion during early
experiments, and knee flexion and extension together with climbing one step of a stair
during later experiments. During the calibration, the actuator was not attached, allow-
ing free movement in all joints.

The data was recorded and stored in tables for every muscle according to its acti-
vation as described in section 5.3. Two different optimization algorithms have been
tested: The first algorithm used a black-box method for the body model, the second
performs curve-fitting with the inverse model.
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With the black-box method, every entry of the table containsthe last recorded kine-
matic configuration and the resulting configuration one time-step later, together with
the EMG values. This method was applied to the hip joint, and the pelvis was held
fixed in the reference frame. All other joint torques have been set to zero for simplici-
ty. During hip flexion and extension the muscles spanning theknee were all relaxed.

The error function of the black-box optimization algorithmsimulates the model for
every table and every entry with the current parameter set consisting ofAi , Ri , andFm

o,i ,
and evaluates the predicted joint angle in comparison to therecorded resulting joint
angle. The squared error is summed over all entries and all joints:

Eblack = ∑
j
∑
i

(

qmodel
i, j −qre f

i, j

)2
, (8.4)

where j is the entry index of the table,qmodel
i, j is the joint angle simulated by the model

based on configuration stored in entryj for the i-th joint, andqre f
i, j is the resulting

reference angle of the same entry.
Optimization was performed repeatedly for all muscles to account for coactivation

and cocontraction.
For this black-box method, no inverse model is required. This can be beneficial, if

more muscles are incorporated and model complexity rises. But it becomes problemat-
ic with redundant muscle activations. But since the movements during this calibration
are not limited to isometric exercises, other movements with other activation patterns
can be included. The optimization has been performed with the Nelder-Mead Simplex
Algorithm described in [NM65].

Unfortunately, this optimization is rather time-consuming because of the required
model simulation. The second method calculates the inversedynamics and stores the
computed knee torquetr,inv

kneein the table entries, together with the EMG values.
The optimization of a particular muscle takes the EMG-to-force function from equa-

tion 8.2 and evaluates the result with the stored knee torquetr
knee:

Einv = ∑
j

(

tr,inv
knee, j − tr,emg

knee, j

)2
, (8.5)

where j is the entry index of the muscle table,tr,inv
knee, j the result of the inverse dynamics

computation stored in entryj, andtr,emg
knee, j the torque resulting from the EMG values

stored in entryj applied to the EMG-to-force function described in equation8.3.
Aside from the reduced complexity of the optimization, bothalgorithms deliver

equally good results. Advantages of the concept of calibration with data tables is
described for the multi-muscle calibration of the torque loop control system in sec-
tion 5.8. Experiments described in section 8.1.5 have been performed with the opti-
mization utilizing the inverse model. An example calibration is shown in figure 8.3.
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8.1.4 Sensor Setup

In addition to the EMG and angle sensors described in section6.4, it is also necessary
to record the joint angle configuration of the unactuated legand the torso inclination
of the operator. Ideally, also the arms and the head should bemeasured, but this is too
complicated due to the high degree of freedom. The sensor system of the unactuated

Figure 8.4: Early stage of the actuated orthosis (foreground). The leg brace used to
hold the sensors for measuring the joint angle information from the unactuated leg is
shown in the background. Squares indicate the position of the accelerometers, circles
mark Hall sensors, and dashed circles show the location of the floor contact sensors.

leg is attached to a second, very light-weight frame. This isshown in the background
of figure 8.4. The torso inclination is measured by a sensor attached to a belly plate,
which is not shown in this image.

During those early experiments, two EMG sensors have been placed on top of the
sartorius and gluteus maximus (for the hip experiments), and two on the semimembra-
nosus and vastus medialis (for the knee experiments). Many other muscles cooperate
during hip and knee movements, but we have chosen those, which are most clear and
simple to record and have a large contribution to the resulting joint torques [Pla03].
The EMG sensors are the same as described in section 6.4 and the data is rectified and
smoothed by a lowpass filter with a cut-off frequency of 5 Hz assuggested for example
in [TVdZ03,BLMB04].

Ankle and knee angles are measured in sagittal plane only on both legs with Philips
KMZ41 Hall sensors (refer to section 6.4), and the orientation of thigh and trunk
is measured with accelerometers ADXL210 from AnalogDevices Inc., as described
in [FKRH04b]. This is necessary, since no fixed axis of rotation exists to which the
Hall sensor or magnet could be attached. Alternatively, goniometers2 could be used.
The joint angles of the left and right hip are calculated as the difference of the an-
gles reported from the accelerometers of the torso and the left thigh, and the torso and

2For example, from BioVision, http://www.biovision.eu, 2007.
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right thigh, respectively. The accelerometers have been placed as close as possible
to the rotation axes of the hip to reduce the inertial acceleration resulting from limb
movement.

In addition to that, force sensing resistors (FSR sensors) are attached under the heel
and footpad on both feet to detect floor contact. All sensors are sampled with 1kHz.

Since no sliding on the floor and no ballistic flight phase is considered, it is sufficient
to record all joint angles for determination of the current kinematic state of the opera-
tor. The position of the reference point in the pelvis is computed through the contact
points with the floor and evaluation of the joint angles with the corresponding lengths
of the body segments. The angular velocities are computed bynumerical derivation
of the joint angles. This could be improved by integrating velocity and acceleration
sensors on every body segment with additional filters to maintain consistency across
all sensors.

8.1.5 Experiments

The experiments presented here are divided into two groups.The first group deals with
simulating the hip joint movement during free leg movements, the second group with
climbing a step.

The first experiments have been performed as follows: The subject is standing up-
right, but only on the left foot. The right leg is free to move in sagittal plane, and the
actuator is not attached. The shank should point roughly down to the ground. Calibra-
tion is performed offline on a set of recorded data: The left side of figure 8.5 shows
a replay of the data used for the calibration. The right side of the same figure shows
the prediction of an arbitrary movement pattern with the same posture. Both diagrams
show the reference hip angle and the predicted hip angle plotted against time. During
this experiment, the model was synchronized with the reference system only at the be-
ginning. After that the knee angle is computed based on the forces predicted from the
EMG signals. As can be seen, the model can adapt the parameters quite well during
calibration. Unfortunately the calibrated EMG-to-force function has a strong curvature
(A ≈ −3.5), thus omitting a force production that is required to reach angles above
70◦ as shown during the prediction on the right side.

One could argue that this experiment is an exercise in curve-fitting only, but it should
not be forgotton that the data is a result of the simulation ofan underlying dynamic
model. On the other hand it is true that the model features limited predictability be-
cause of the low number of integrated muscles, and the abstraction from muscle and
tissue properties.

The second group of experiments which is presented here is very much optimized on
the task of climbing one step of a stair for several reasons: First of all, climbing a stair
is a prominent example where large force support in the knee joint can be applied for
good, in contrast to normal walking where the thigh muscles are only activated during
certain short phases, and additional support is not sensible for healthy subjects. Sec-
ond, it omits some problems which complicate the experiments unnecessarily: When
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Figure 8.5: Results from early experiments: The subject was standing inan upright
position. The recorded reference hip angle is plotted together with the hip angle pre-
diction of the model based on the EMG signals (no actuation).Zero degrees indicate a
hip in neutral position, pointing down. A positive angle means hip flexion (raising of
the knee, torso remains upright). Calibration had been performed with the data on the
left side. The right side shows the prediction for previously unknown data.

considering the sit-to-stand movement, for example, additional contact forces have to
be detected at other locations. And since both feet are set side by side during standing
up, the ground reaction forces for the individual feet cannot be estimated by a planar
model in sagittal plane.

This experiment consists of two movements: During the first one the subject is
standing upright and flexes and extends his knee and hip joints. In the second move-
ment the subject is climbing one step of a stair, with the right leg leading. During
the movements the actuator was detached to allow unhinderedmotion. The kinematic
information as well as the EMG signals are recorded. Data of both parts are utilized to
calibrate the flexor and extensor muscles (as shown in figure 8.3).

This simple experiment tests the most important aspects of the algorithm: motion
of all limbs, various points of contact during single- and double-support phase, swing-
phase of the right leg, cocontraction of knee flexor and extensor muscles and coactiva-
tion with other muscles that are not recorded.

The calibration of the muscle parameters is divided into three parts: The first part is
performed after the backward motion with the knee flexors, the second part after climb-
ing the step, and the third part performs the calibration again for both muscles without
the need to acquire new data. Figure 8.6 shows a replay of the data used for calibration
to show the model adaptation. Applying the EMG signals to thebody model results in
a torque-curve very similar in shape and magnitude to the torque-curve calculated by
the inverse dynamics as described in section 8.1.2. The offset of the torque curves is
partly a result of measurement errors, and not modeling the passive forces of the mus-
cles and tissue: When the muscles of the free leg in an uprightstanding position are
relaxed, the knee of the human is not completely extended, incontrast to the modelled
knee, due to passive forces of the muscles. This leads to an angular displacement re-
sulting in a different knee torque. In addition to the vertical displacement, a horizontal
displacement exists as a result of the delays through the numerical derivation of the
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Figure 8.6: This diagram shows the knee torque as calculated through inverse dy-
namics compared to the torque resulting from the EMG signal evaluation (after having
calibrated the EMG-to-force parameters of the knee flexor).A negative torque indi-
cates knee flexor activity. The vertical offset is a result from the unmodeled passive
muscle force and errors in the angular measurements of the thigh and shank.

joint velocities and joint accelerations. This can be compensated for an offline replay,
but not for an online experiment.

Since the body model will be synchronized with the referencesystem during every
iteration, it is sufficient to display the torque plot of the actuated joint to analyse the
short-term behavior of the system. The overall fitting of thejoint angletrajectory is
not so important, since the human is inside the control loop and can compensate a
divergence from the desired trajectory.

Step two is performed after stepping up the stair, as shown infigure 8.7. The data
begins when the right foot is lifted from the ground. A littleflexor activity with co-
contraction indicates the interval where the knee is bend toraise the right foot. The
section between the dashed lines indicates the double support phase, during which the
weight is shifted forward from the left to the right foot. After the dashed lines, the left
foot is raised and also put on the same step.

As can be seen in the lower part of the figure, both muscle groups are active dur-
ing this motion resulting in the calibration of the knee extensor parameters using the
parameters of the knee flexor.

In the third and final step, parameters of both muscles have been optimized repeat-
edly without the need to acquire new data. This was necessarysince results modify
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Figure 8.7: Top: torque prediction with a dynamic body model during stair climbing.
The torque computed by the inverse dynamics is plotted over time, together with the
torque derived from the EMG signals. The dotted lines mark the double support phase,
in which deficits of the model can be seen. Middle: Postprocessed EMG activity of
the observed muscles. Bottom: Visualization of the reference sensor information.
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each other due to cocontraction. This procedure was terminated when the change in
parameters was sufficiently small.

The upper part of figure 8.7 shows the torque curves during stair climbing after
the calibration was completed (a replay of the recorded data), and figure 8.3 shows the
final calibration curves for both muscles. When examining those curves, the high force
output of the knee extensor muscle attracts attention. But it should be considered, that
the vastus medialis recorded during this experiment represents a whole muscle group
with a sum of peak forces of over 5000N [DLH+90]. But climbing one step of a stair
requires not maximum muscle force. Thus it can be said that the order of magnitude is
correct. This is different for the knee flexor muscle that also represents a muscle group
with a sum of peak forces over 2000N. For that, it should be noted, that the movement
chosen for the calibration is nowhere near the maximum forcethe knee flexor can
produce. But this does not explain the strong curvature of the function, prohibiting
the production of large forces during extrapolation for higher muscle activations. This
could be a result of inaccurate modeling, or a result of the misalignment of the EMG
signal and the torque computed by the inverse dynamics. It reduces the predictability
of the model across different movements, but nevertheless allows a good prediction for
the setup it was calibrated for (task-dependent).

Examining the upper part of figure 8.7 more closely reveals the most important prob-
lem of the control system: The measurement of the operator’skinematic configuration
is inaccurate, so that when the floor contact configuration ischanged (the left foot is
raised from the ground), a large discontinuity in the torqueprediction att ≈ 4.62s can
be observed. In-between the dashed lines, the operator was leaning forward to bring
his mass forward over the leading foot. Unfortunately, the torso angle was determined
not accurately enough (amplified by the unmodeled arms and head) to reflect this in
the data. Instead, the data suggests that the center of mass of the human is behind the
supporting foot, leading to an abrupt increase of the computed knee torque at the tran-
sition to the single support phase. Such a large knee torque is possible, because during
this phase the foot with floor contact is rigidly connected tothe floor in the model, cre-
ating a large supporting ankle torque to establish consistency with inaccurate sensor
readings.

In theory, if the motion is completely tracked with head, arms and upper torso (or
the torso has to be stiff), and if the pose sensors are accurate enough, an abrupt change
should not occur. Unfortunately this is not the case with ourexperimental setup. In-
fluence of unmeasured and unmodeled body parts, unmodeled degrees of freedom,
motion artifacts due to inertial accelerations, and errorsin calibration of the accelerom-
eters attached to the torso and thighs result in inaccurate angle readings. Especially for
the heavy torso this leads to wrong torque calculations in the joints for some configu-
rations.

Before and after the double support phase, a good correlation of the two torque-
curves can be seen expressing the performance of the body model and the consistent
calibration for both muscles in those configurations.
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8.1 Motion Prediction with a Dynamic Body Model

8.1.6 Results

Figures 8.5, 8.6, and 8.7 show results of the model adaptation and intended motion
prediction. The shape of the curves correlate very well, although sometimes the am-
plitudes of the curves differ. This is not a major problem forthe desired application:
Since the subject wearing the orthosis is inside the controlloop of the system, he or
she can increase or decrease the muscle activity a little to adapt to the circumstances.

The major problem of this approach occurs during the double support phase and at
the transitions between contact configurations: The torques computed by the inverse
dynamics cannot be computed reliably and continuously. Feeding those torques into
the simulation of the body model may result in an unexpected target joint angle, which
is not desired. Without a solution to this problem, experiments cannot be performed
safely. In order to solve those problems, the system and model can either be simplified,
hoping to get a more robust and reliable system, or made more complex, addressing
all drawbacks directly. Similar problems have been investigated during the KONDISK
research project: In [SB98] the theory of a state-based controller is proposed that han-
dles hybrid discrete-continuous dynamic systems. It was applied to the simulation of
a multi-fingered robotic hand during grasping and regrasping tasks, and later investi-
gated and extended in experiments with a robotic hand [BS00]. Problems of contact
state errors due to inconsistencies between the model and the real world have been
addressed in [Sch03]. Applying such a control system to the exoskeleton can improve
the system behavior.

For most of the deficits or simplifications that have been mentioned above an appro-
priate solution or replacement may be found that improves the results. For example,
the complex biomechanical model described in section 4.3 can be applied, the model
can be three dimensional, more EMG sensors can be evaluated,and joint friction and
passive elements can be included. But this does not solve theinherent problem of this
approach which is the sensibility of the inverse dynamics computation to disturbances,
and inaccuracies in the sensor readings and modeling. Some of those problems could
be reduced by increasing the complexity of the sensor system: Recording the angular
velocities and acceleration directly can reduce some artefacts. In addition, the upper
torso, arms and head could be equipped with sensors to improve the consistency be-
tween the model and the real world. But most importantly, theground reaction forces
have to be determined properly, and the pose in the global reference system has to
be determined accurately due to the effect of gravity. Even with an array of 64 FSR
sensors from Medilogic3 the acquired data was not sufficiently accurate. Besides, ex-
tending the system with, in theory, redundant sensor information adds the problem of
consistency across different sensors, and an appropriate calibration has to be imple-
mented.

Some of those problems disappear if the exoskeleton is extended to a full-body suit.

3T&T medilogic Medizintechnik GmbH (Germany), http://www.medilogic.com/, 2007.
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In that case, the joint angles could more accurately be determined, and more limbs can
be integrated into the model.

On the other hand, the system and dynamic model can be simplified, relying on less
sensors, and performing some estimations. Such approachesare presented in chapter 2,
where the RoboKnee [PKMC04] is one example of them: Ground reaction forces un-
der the feet are measured, and the knee torque that is necessary to maintain a statically
stable pose is computed through a very simple model. A certain percentage of this
torque is added by the actuator. The drawback of this approach is that it does not
regulate the support depending on the task, and it does not "listen" in any way to the
operator for his or her desired movement.

For the BLEEX mentioned in chapter 2 a more complex model was developed that
computes the support torques required to relieve the operator of the weight and inertia
of the exoskeleton and payload. But the sensitivity of the model to the payload led to a
control algorithm using a position controller and a model based torque compensation,
depending on the phase of gait, as published in [KSH06].

As a conclusion to the experiments presented in this chapterit can be said that the
theoretical model is too complex for application in this particular exoskeleton. If the
dynamic body model is applied properly it would offer some advantages: The desired
movement can be computed in advance and can be modified according to constraints
defining stable movements, or can be inhibited completely for safety reasons. But
those features begin to make sense only with a more complex exoskeleton hardware,
in terms of more actuated degrees of freedom. Furthermore, the favorable behavior
of the torque controlled system presented in section 4.6 cannot be integrated: The
robustness to external contact forces wherever they appearcannot be achieved, and it
is not possible to override the predicted "desired" motion or pose through additional
forces from unmeasured muscles, or, for example, the hand helping to move the leg.
The system always sticks to its simulated results.

For the exoskeleton hardware presented here, a more simple and reliable approach
was sought and found. This approach has been presented in chapter 4.

8.2 Knee Torque Prediction with a Simplified
Body Model for Calibration

This section discusses the application of simplified body models to be used for specific
tasks. To analyze the behavior of such systems, the special case of a system modeling
the sit-to-stand movement is developed and analyzed. If thesystem proves to be useful,
new models can be developed for the exoskeleton control.

During the calibration movement described in chapter 5 it turned out, that not all ex-
tensor muscles are equally active during isometric exercises at all knee angles, name-
ly the vastus medialis and vastus lateralis. Those muscles are activated during tasks
where larger muscle forces are required, for example, during standing up from a chair
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or during knee bends. The simplified model here produces reference values for the
calibration of the EMG-to-force parameters. By analyzing the model behavior in this
context, it can be evaluated in how far this model shows consistency with the real
world.

A simplified version of the body model described in section 8.1 was developed,
tailored to the task of standing up from a chair. This model isused to calculate the
knee torque to obtain the reference torques for the optimization process.

Recording of the data is started after losing contact with the chair, and stopped when
standing in an upright position. No transitions between contact configurations has to
be considered. The body model is simplified in such a way that little extra sensors are
required. The algorithm has been published in [FH07].

8.2.1 Model Simplifications

To estimate the knee torque the muscles are producing duringgetting up from a chair
without hindering the movement, it is necessary to track themovement and compute
the torque by inverse dynamics. The advantage of using a rather simple movement is
the possibility to apply major simplifications to the model.Without those, the problem
cannot be solved satisfyingly in a real world environment oronly with many additional
sensors.

For the sit-to-stand movement the body model uses the following simplifications:

• Both legs are merged into one, and a two-dimensional model is used.

• After losing contact with the chair, the operator is not allowed to support himself
with his arms to omit unmeasured and unpredictable externalforce input.

• Only the trunk, thigh, and shank are modelled (as rectangles). The arms and
head are approximated through modifications of the trunk properties. Excessive
movements with the arms have to be avoided.

• The ankle is rigidly attached to the floor, the foot is not modelled.

• Joint friction and passive joint stiffness is neglected (typically 2–5Nm/rad for
most major joints in the mid-range of motion [ZW90]).

• Joint accelerations are small and can be neglected, especially because the phase
when losing contact with the chair is not regarded due to reaction forces from
the seat.

• Joint velocities, typically below 50/s, during the considered movements con-
tribute only about 1% to 3% of the knee joint torque, and are neglected.

Following the model description from above, the parametersof the model are:
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• The total body mass of the human:mtotal (must be measured from the subject),

• Masses of the body segments as a fraction ofmtotal for the trunk, thigh and shank
taking into account the combination of limbs as described above.

• Length and width of the trunk, thigh and shank:(Lu,Wu), (Lt ,Wt), (Ls,Ws) must
be measured from the subject.

• The location of the center of mass as a fraction of the lengthof the body seg-
ment from the proximal end for each body segment,rt (thigh) andrs (shank),
taken from literature [Win90a]. The mass center of the trunkru is determined
separately later on. It also incorporates the arms and head.

• The location of the balance point of the foot:bx = 0.04m from the ankle joint
towards the distal end of the foot (see remarks below).

The individual values used in the experiment are given in appendix C. The model
includes three joints: ankle, knee, and hip, with corresponding generalized coordinates
q1, q2, and q3, which are defined as shown in figure 8.8. The third angle can be
computed as a result of the other two angles by introducing anadditional constraint:
The center of mass (CoM) of the body projected onto the groundmust be on a specific
point within the region of the foot, the balance point~B = (bx,0)T . The ankle angle
is measured in addition to the knee angle, because a sensor can be easily attached.
By computing the hip angle as described below, it can also integrate effects of the
unmodeled head and arms.

The x-coordinate of the center of mass of the model can be computed by:

CoMx =
(

Lurumucos(q1+q2 +q3)+Ls(mt +mu +ms(1+ rs))cos(q1)

+Lt(mu+mt(1+ rt))cos(q1+q2)
)

·
(

ms+mt +mu
)−1

(8.6)

The angle of the hip is calculated by solving equation 8.6 forq3:

q3 =











−q1−q2 if C > +1

π −q1−q2 if C < −1

arccos(C)−q1−q2 otherwise

(8.7)

with

C =
A
B

A = bxmtotal −Ls(mt +mu+ms(1+ rs))cos(q1)

−Lt(mu+mt(1+ rt))cos(q1+q2)

B = Lurumu
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and

bx = CoMx (balance condition) (8.8)

mtotal = ms+mt +mu (total body mass)

If C > +1 orC < −1 the balance condition is violated:CoMx 6= bx, and the arc cosine
of C cannot be computed. To allow calculation of an approximatedhip angle,C is
replaced by the boundary it has exceeded.

8.2.2 Human Body Model

The equations with the simplifications justified above (joint accelerations and veloc-
ities are neglected: ˙u1 = u̇2 = u̇3 = u1 = u2 = u3 = 0) have been computed with the
tool AUTOLEV, yielding:

0 = −Ta−Lsms(1+ rs)gcos(q1)−mtg(Lscos(q1)+Lt(1+ rt)cos(q1+q2))

−mug(Lscos(q1)+Lt cos(q1+q2)+Lurucos(q1+q2 +q3)) (8.9)

0 = −Tk−Ltmt(1+ rt)gcos(q1+q2)−mug(Lt cos(q1+q2)

+Lurucos(q1+q2+q3)) (8.10)

0 = −Th−Lurumugcos(q1+q2+q3) (8.11)

The knee torqueTk can be easily obtained by rearranging equation 8.10:

Tk = −g(Ltmt(1+ rt)cos(q1+q2)+mu(Lt cos(q1+q2)

+Lurucos(q1+q2+q3))) (8.12)

Assuming that−1≤C ≤ +1 and substitutingq3 in equation 8.12 with the expres-
sion from equation 8.7 yields:

Tk = −g(Ltmt(1+ rt)cos(q1+q2)+muLt cos(q1+q2)+bxmtotal

−Ls(mtotal(1+ rs))cos(q1)−Lt(mu+mt(1+ rt))cos(q1+q2)) (8.13)

Interestingly, the knee torque is not depending onru or q3, meaning that there is no
need to measure the torso angle or any upper limbs. But this implies proper knowledge
of the balance point. Ifq3 should be computed, the mass center of the trunk,ru,
must be chosen in such a way that the balance condition from equation 8.8 is fulfilled
throughout the sit-to-stand movement. ArgumentC from equation 8.7 only exceeds
the upper boundary+1 when the CoM cannot be brought over the balance point due
to the knee and ankle configuration. The lower boundary−1 is never under-run during
correct measurements.

Evaluating equation 8.7 forru in one important extreme configuration of the move-
ment yields the required relative position of the mass center of the trunk. The extreme
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configuration is taken from the initial phase when losing contact with the chair: The
body is bent maximally forward to bring the center of mass almost over the knee joint
(over the balance point). Solving equation 8.6 forru yields:

ru = −[Ls(mt +mu+ms(1+ rs))cos(q1)+Lt(mu+mt(1+ rt))cos(q1+q2)

−bx(ms+mt +mu)][Lumucos(q1+q2+ q̃3)]
−1+ r∆ (8.14)

To take into account that the body is maximally bent forward,q̃3 is set to an extreme,
resulting in a horizontal trunk configuration:

q̃3 = −q1−q2 (8.15)

The contributionr∆ ≈ 0.2 moves the mass center a little towards the head to be on
the safe side for repeated measurements. It has to be pointedout, thatru, bx, andq3

are directly related: Modifying one of those quantities results in a change of at least
one of the other two.

Unfortunately, thex-coordinate of the balance point,bx, which is considered to be
a parameter, appears in equation 8.13 multiplied by the total body massmtotal. As a
consequence, variation of the balance point has significantinfluence on the computed
knee torque.

8.2.3 Experiments

Prior to the calibration with the sit-to-stand movement, four of the six muscles used for
the torque loop approach had been calibrated as described inchapter 5: all, except the
vastus medialis and vastus lateralis. After that, another calibration step was performed,
with a sit-to-stand movement as described in section 8.2.1.The reference torques
have been computed from the inverse dynamics of the simplified body model, and the
parameters of the last two muscle have been optimized.

Figure 8.9 shows the results of a calibration: Att ≈ 1.6s the movement was rec-
ognized due to a sufficient change in the knee angle. For 1.6s< t ≤ 4s the prediction
correlates with the reference very well. Fort > 4s a discrepancy can be seen: The
predicted torque is smaller than the torque based on the inverse dynamics. Due to the
balancing condition the thigh and trunk is not upright, but the knee and hip are slight-
ly flexed. This results in a residual torque which is not present in the human. This
could be omitted, if the balance point would be allowed to move on a trajectory, and
if this trajectory was known. Unfortunately it is not, whichdecreases the performance
of the model: Since all sit-to-stand movements are performed slightly different, the
true balance point is deviating from the point of the model leading to an error in the
estimation. This can be observed if the calibrated parameters are applied to data from
a different trial: The torques computed from the inverse dynamics and derived from
the EMG signal show a considerable error of 20% or more. By adjusting the balance
point the reference data can be manipulated to fit the predicted data. A trajectory for

130



8.2 Knee Torque Prediction with a Simplified Body Model for Calibration

q x
y

bx

1

q2q3

�������
�������
�������

�������
�������
�������

Figure 8.8: Simplified model
for calibration: definition of
the angles, balance point and
reference system.
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Figure 8.9: Replay from the sit-to-stand experi-
ment: The knee torque calculated with the inverse
dynamics of the simplified model can match the
calibrated EMG-based biomechanical model.

the movement of the balance point could be found for every trial, leading to a good cal-
ibration. But this trajectory was different from trial to trial, reducing the predictability
of the model significantly.

8.2.4 Results

In this section, a simplified rigid body model was proposed tobe used to produce refer-
ence values for calibration of the EMG-to-force parameters. In addition, the feasibility
of such simplified models in connection with the exoskeletonwas investigated.

Unfortunately, the output of the simplified model is not accurate enough to be used
for a reliable and accurate calibration. But it can be used for a rough estimation of
the joint torques for this particular task with the suggested simplifications. Also, if
a trajectory for the balance point is established successfully, a quantitative analysis
of the torque during this movement can be performed. This canbe achieved by either
integrating more sensors, or by calibrating parameters of abalance point trajectory that
are determined together with the EMG-parameters for several sit-to-stand movements.
In that case, the number of parameters must be small and boundto feasible values to
not overfit the model to a specific data set.

With slight modifications, this model could also be used in a similar fashion to the al-
gorithms presented for the RoboKnee or BLEEX, as described in section 2.1. In those
algorithms, the controller compensates a certain percentage of the torque as computed
by the inverse model of the operator with the exoskeleton. But as was shown above,
those estimations are very rough, and even more simplified for the RoboKnee. As a
consequence, the actuation of the exoskeleton takes over a varying amount of torque
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in relation to the total joint torque. This leads to a system requiring some training by
the operator to adapt movement patterns, and to react properly to the support.

8.3 Conclusions on using Rigid Body Models

Utilizing rigid body models for the prediction of movementsor joint torques as well
known from simulation in industrial applications opens a wide range of possibilities.
If successfully applied, interesting quantities can be computed through the dynamic
equations, allowing modification of joint torques for stability control, checking the
movement on feasibility to suppress dangerous trajectories and much more, in combi-
nation with a position, velocity or acceleration controller.

Unfortunately, in our context it is very difficult to establish consistency between the
real world and the model, namely the human body, which is highly non-rigid in the
trunk and possesses a large number of degrees of freedom in the joints and between
the vertebrae of the spine. And since the torques and forces in the joints of the human
body cannot be measured directly non-invasively, the kinematic state of all limbs of the
operator and all objects having contact with the operator and exoskeleton have to be
determined to incorporate the effect of gravity and inertia. Contact forces include the
ground reaction forces, forces from a chair the operator is sitting in, or from a handrail
that is used during stair climbing.

While this may be achieved with external sensors observing the operator and the
exoskeleton from a fixed reference frame, this is almost impossible with sensors
mounted on the exoskeleton and operator alone, which is required for a mobile system
that should not be confined to a special indoor environment.

Most of the projects described in chapter 2 using inverse dynamics of a model are
coupled to force or torque controllers, which take over a certain share of the torque
required for a certain task. The question arises, what performance such systems can
achieve. Unfortunately, this is not easy to answer, and depends on the model complex-
ity and reliability. But depending on the accuracy of the system, the contribution of the
actuation has to be rather small especially for control systems which rely on adding a
fixed torque share in relation to the statically stable pose.Otherwise if the support is
large, and the computed support torque is larger than the torque required for the task,
for example, when the operator wants to sit down while the system tries to maintain a
statically stable pose, the operator would have to activelywork against the support to
perform the desired movement. Furthermore, in those systems the resulting movement
of the cooperation of the operator and the exoskeleton is also unknown, preventing the
inclusion of additional stability and safety algorithms asdescribed above.
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In this work an exoskeleton system for supporting the operator with extra force in the
knee joint is presented. The interface between the operatorand the exoskeleton is
based on the evaluation of electric signals emitted by the muscles during their activa-
tion.

The main focus of this research was put on the interface between the human and the
exoskeleton and the recognition of the intended action of the operator.

Two algorithms have been investigated for the purpose of controlling the support of
the actuation: The first algorithm estimates the operator’sown force production from
the EMG signals and contributes a linear share by the actuation. The second algorithm
takes the muscle forces estimated from the EMG signals, and simulates the dynamics
of a rigid body model of the operator and the exoskeleton. Theresulting motions of
the rigid bodies is interpreted as the desired movement of the operator.

The evaluation of the EMG signals for the first algorithm havebeen performed with
a body model which is based on complex models developed in thebiomechanical
and biomedical communities. The parameter calibration of this model uses a novel
approach to select relevant reference values based on the muscle activations and dis-
tributes the measured torque among the active muscles with respect to their activation
and physiological cross-sectional area.

Both control algorithms have conceptual advantages and disadvantages: The sec-
ond system allows incorporation of a variety of algorithms to modify the movement
because the trajectory of the exoskeleton is known in advance, but experiments have
shown that the system is very sensible to inaccurate sensor readings, making a practi-
cal application very complex and difficult. This approach begins to make sense, if the
exoskeleton construction is more complex, like in a full-body suit. The first system
on the other hand is very robust and reliable, requiring onlya minimum of sensors,
because the complete kinematic state does not need to be known. This simplicity is
traded for the possibility to include certain algorithms, for example, to enforce postural
stability, because the resulting movement is not known in advance.

The mechanical construction of the exoskeleton and actuation that was developed
to investigate the system behavior in real world experiments was not the main focus
of this work, but performed very well and allowed evaluationof the human-machine
interaction during the movements of interest. The architecture is designed in such a
way that it can be easily extended with more joints.

In the introduction many different potential applicationshave been pointed out that
can take advantage of exoskeletons like the one presented inthis work. With the ex-
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periments it was shown that for healthy operators the desired movements can be suc-
cessfully performed in cooperation with the exoskeleton toreceive support.

But with the end of this thesis, the research is far from finished. It rather opens a door
for further interesting research: Details of the body modelcan be further optimized,
for example, inclusion of activation dynamics, and the torque distribution during cal-
ibration can be further investigated. A small redesign of the exoskeleton can allow
faster movements with lower support to investigate the human-machine interaction for
more dynamic movements. For this, the model can be easily extended to incorporate
the force-velocity relationship of muscle. It can also be analyzed if the support ratio
can be adapted on-the-fly to avoid oscillations in the human-machine interaction, and
the controller can be modified to simulate joint stiffness and friction depending on the
degree of muscle cocontraction to smoothen the resulting joint trajectories.

Looking at disabled people and patients opens a different challenging field of re-
search: Since no two patients are equal, the quality of EMG signals and the contained
information have to be investigated with respect to the presented algorithms. More
signal processing stages may be introduced, and additionalsafety measures have to be
incorporated to react on unskillful behavior and spasticities of patients.

This is all interesting and challenging work for the future.The motivation for this re-
search is further increased by the positive feedback on the publications of the research
results from industrial companies, rehabilitation institutes, and patients, all showing
great interest in the development of the device.
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List of Main Symbols

αi angle of the i-th joint

ē(t) moving average of the raw EMG signal

l̂ ts tendon slack length from literature

P̂i i-th waypoint of a musculotendinous pathway in the local coordinate system it
is linked to

f vector function that models inertial forces and gravity

g(q) nonlinear function representing the current system configuration and geometry

M(q) matrix function that specifies mass distribution of the rigid bodies

q vector of generalized coordinates

T vector of joint torques and external forces

u vector of generalized velocities

φ pennation angle

φo pennation angle at optimal muscle fiber length

l̃m normalized muscle fiber length

A shape parameter of the exponential activation function, and of the logarithmic
portion of the piecewise activation function

a(u) general neural activation function

a0 activation at point of transition between the two portions of the piecewise acti-
vation function

aexp(u) exponential neural activation function

apw(u) piecewise neural activation function

e(t) raw EMG signal

Eemg error of the EMG-parameter optimization
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Egeom error of the geometry parameter optimization

Fm force produced by a muscle

Fm
A active muscle force

Fm
o maximum force of a muscle at optimal muscle fiber length

Fm
P passive muscle force

Fm
k,h force share of a muscle in entryh of calibration tablek

Fmt force of the musculotendinous unit

FA force measured at the tip of the actuator

fA(l̃m) active force-length curve

fP(l̃m) passive force-length curve

L(e(t)) Lowpass filtering function applied to signale(t)

lm length of the muscle fibers

lm
o optimal muscle fiber length

l t length of the tendon

l ts tendon slack length

lmt length of the musculotendinous unit

Ls,Ws length and width of the shank rectangle

Lt ,Wt length and width of the thigh rectangle

Lu,Wu length and width of the trunk rectangle

Mi(α0, . . . ,αJ−1) transformation function for the i-th waypoint from the local coordi-
nate system in the pelvis coordinate system

ms mass of both shanks of the operator

mt mass of both thighs of the operator

mu mass of the trunk of the operator

mtotal total body mass of the operator

Pi(xi ,yi ,zi)
T i-th waypoint of a musculotendinous pathway in the pelvis coordinate

system
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R range of the postprocessed EMG signal

st scale of the tendon slack applied to value from literature

TA joint torque derived fromFA and the knee angle

Tg joint torque as a result of gravitation

u(t) postprocessed EMG signal

u0 postprocessed EMG signal at point of transition between thetwo portions of
the piecewise activation function

uo postprocessed activation offset

uk,h postprocessed EMG signal of a muscle in entryh of calibration tablek
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A Biomechanical Model

This section gives a quick overview of the necessary equations for the biomechani-
cal model used in chapter 4. The complete description is given in section 4.3. The
estimated knee torque is calculated by:

T =
N−1

∑
i=0

r iF
mt
i

with

Fmt
i = (Fm

A,i +Fm
P,i)cosφi , (force of the musculotendinous complex)

Fm
A,i = fA(l̃m

i )Fm
o,iai(ui), (active muscle force)

Fm
P,i = fP(l̃m

i )Fm
o,i, (passive muscle force)

ai(ui) =
eAiuiR

−1
i −1

eAi −1
, (muscle activation)

φi = arcsin

(

lm
o,i sinφo,i

lm
i

)

, (pennation angle)

l̃m
i =

lm
i

lm
o,i

, (normalized muscle fiber length)

lm
i =

√

(lm
o,i sinφo,i)2+(lmt

i −st
i l̂

t
s,i)

2, (muscle fiber length)

lmt
i =

n−2

∑
j=0

‖Pj+1,i −Pj ,i‖, (length of musculotendinous complex)

Pi = M i(α0, . . . ,αJ−1)P̂i (muscle waypoints)

The order of computation is from the bottom to the top. Input of the system are the
values of the joint angles,α j , with 0≤ j < J, andJ being the number of joints in the
model, and the postprocessed EMG signal,ui , from every muscle. Required constants
are presented in the following sections.

139



A Biomechanical Model

A.1 Muscle Parameters

The parameters which have to be determined by a calibration routine for every mus-
cle i are: st

i (tendon slack length scale),Ai (shape of the EMG-to-force function),Ri

(maximum EMG signal), andFm
o,i (maximum muscle force at optimal fiber length).

The remaining parameters are given in table A.1.

Muscle i r i [m] l ts,i[m] lm
o,i[m] φo,i [deg]

Rectus Femoris 0 -0.039 0.346 0.084 5
Vastus Medialis 1 -0.037 0.126 0.089 5
Vastus Lateralis 2 -0.037 0.157 0.084 5
Semimembranosus 3 0.038 0.359 0.080 15
Semitendinosus 4 0.042 0.262 0.201 5
Biceps Femoris (long) 5 0.042 0.341 0.109 0

Table A.1: Muscle index, moment arms,r i , tendon slacklengths,l ts,i , optimal mus-
cle fiber lengths,lm

o,i, and pennation angles at optimal muscle fiber length,φo,i , of the
three extensor and three flexor muscles used for the biomechanical model. Data taken
from [DLH+90], except the moment arms, which have been derived from owncom-
putations.

A.2 Limb Segment Transformation

To compute the waypoints of the muscle-tendon units in a reference frame, the indi-
vidual limb segments have to be transformed into the same reference frame according
to the hip and knee joint angles. The segments considered here are the pelvis, femur,
tibia, and patella.

The model relating the joint angles to the segment transformation matrices is pub-
lished in [DLH+90], and summarized here for convenience. Some simplifications have
been applied.

The transformation matrices needed here are homogenous 4×4-matrices. The trans-
lation of frame B in frame A is defined by:

ATB(x,y,z) =









1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1









(A.1)
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A.2 Limb Segment Transformation

The rotation of frame B in frame A around the z-axis with angleθ is defined as:

ARB(θ) =









cos(θ) −sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1









(A.2)

The transformation from the pelvis segment to the femur segment is defined by the
concatenation of a translation and a rotation, which takes into account the hip joint
angle,α1,

pelvisM femur(α1) = pelvisTH0(−0.0707,−0.0661,0.0835) ·H0Rfemur(α1) (A.3)

where H0 is an intermediate frame. Hip adduction and rotation is neglected here.
The transformation from femur to tibia is defined by a translation and a rotation,

which takes into account the knee joint angle,α0,

femurM tibia(α0) = femurTH1( f t
x(α0), f t

y(α0),0.0) ·H1Rtibia (α0) (A.4)

where H1 is an intermediate frame.f t
x(α0) and f t

y(α0) are functions of the knee angle
and take into account the small displacement inx- andy-directions, which occurs dur-
ing knee flexion, because the knee joint is not an ideal swiveljoint. The functions are
defined through a series of interpolation points, given as pairs of the knee angle and
the corresponding displacement.

For f t
x(α0) these are:

Pf t
x
= { (−2.09,−0.0032),(−1.74,0.00179),(−1.39,0.00411),

(−1.04,0.00410),(−0.69,0.00212),(−0.35,−0.0010),

(−0.17,−0.0031),(0.000,−0.00525) }

And for f t
y(α0):

Pf t
y
= { (−2.09,−0.4226),(−1.22,−0.4082),(−0.52,−0.3990),

(−0.35,−0.3976),(−0.17,−0.3966),(0.000,−0.3960) }

The transformation from tibia to patella is defined by a translation and a rotation,
which takes into account the knee joint angle,α0,

tibiaMpatella(α0) = tibiaTH2( f p
x (α0), f p

y (α0),0.0024) ·H2Rpatella( f p
r (α0)) (A.5)

f p
x (α0) and f p

y (α0) are functions that describe the translation of the patella as it slides
around the knee joint.f p

r (α0) defines the rotation of the patella in relation to the knee
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A Biomechanical Model

joint angle. All three functions are defined through interpolation points, given as pairs
of the knee angle and the corresponding displacement and rotation, respectively.

For f p
x (α0) these are:

Pf p
x

= { (−2.09,0.0173),(−1.39,0.0324),(−1.04,0.0381),

(−0.69,0.0430),(−0.35,0.0469),(−0.17,0.0484),

(0.000,0.0496) }

And for f p
y (α0):

Pf p
y

= { (−2.09,−0.0219),(−1.57,−0.0202),(−1.39,−0.0200),

(−1.04,−0.0204),(−0.69,−0.0211),(−0.35,−0.0219),

(−0.17,−0.0223),(0.005,−0.0227) }

And finally for f p
r (α0):

Pf p
r

= { (−2.09,0.308),(−2.00,0.308),(−1.45,0.306),

(−0.52,0.270),(0.027,−0.036),(0.170,−0.280) }

The computation of the actual values of the functions is performed by linear interpola-
tion between the given points.

The transformation from the pelvis to the tibia can be achieved by concatenation of
the individual transformation matrices

pelvisM tibia(α0,α1) = pelvisM femur(α1) ·
femurM tibia(α0) (A.6)

and to the patella with

pelvisMpatella(α0,α1) = pelvisM tibia(α0,α1) ·
tibiaMpatella(α0). (A.7)

The transformation matrix that has to be applied to a specificmuscle waypoint de-
pends on the segment the waypoint is located in. The waypoints and their segment
location are presented in section A.3.

To compute the length of the musculotendinous path, all waypoints have to be trans-
formed into the pelvis frame with the current knee and hip angles as stated in equa-
tion 4.10.
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A.3 Waypoints of the Musculotendinous Units

A.3 Waypoints of the Musculotendinous Units

The muscle waypoints are computed with a subset of the data published in [DLH+90],
which is summarized here for convenience. In tables A.2 to A.7 each musculotendi-
nous unit is defined through three-dimensional waypointsP̂i(x,y,z) in the individual
body segments (pelvis, femur, tibia, patella). The waypoint in the reference frame,
Pi(x,y,z), can be obtained by transforming the waypoints with matrices as described
in section A.2. The optional range specifies an interval for the knee joint angle. Only
if the current joint angle falls within the boundaries of theinterval, the waypoint is in-
serted into the musculotendinous path. Those optional waypoints are wrapping points,
which indicate that the tendon wraps around the joint under certain angles. If this field
is left blank, the waypoint is always part of the musculotendinous path.

A.4 Force-Length Curves

The interpolation pointsPA of the active force-length curvefA(l̃m
i ) [DLH+90] are given

as pairs of normalized length and normalized force:

PA = { (−5.00,0.000),(0.000,0.000),(0.401,0.000),(0.402,0.000),

(0.404,0.000),(0.527,0.227),(0.629,0.637),(0.719,0.857),

(0.861,0.950),(1.045,0.993),(1.218,0.770),(1.439,0.247),

(1.619,0.000),(1.620,0.000),(1.621,0.000),(2.200,0.000),

(5.000,0.000) }

The interpolation pointsPP of the passive force-length curvefP(l̃m
i ) [DLH+90] are

given as pairs of normalized length and normalized force:

PP = { (−5.00,0.000),(0.998,0.000),(0.999,0.000),(1.000,0.000),

(1.100,0.035),(1.200,0.120),(1.300,0.260),(1.400,0.550),

(1.500,1.170),(1.600,2.000),(1.601,2.000),(1.602,2.000),

(5.000,2.000) }

The computation of the actual values of the function is performed by linear interpola-
tion between the given points.

143



A Biomechanical Model

P̂i(x,y,z) Segment Range[rad]
(-0.0295,-0.0311,0.0968)Pelvis
(0.0334,-0.4030,0.0019) Femur −3.0≤ α0 ≤ −1.46
(0.0121,0.0437,-0.0010) Patella

Table A.2: Rectus femoris waypoint definition.

P̂i(x,y,z) Segment Range[rad]
(0.0140,-0.2099,0.0188) Femur
(0.0356,-0.2769,0.0009) Femur
(0.0370,-0.4048,-0.0125)Femur −3.0≤ α0 ≤ −1.21
(0.0274,-0.4255,-0.0131)Femur −3.0≤ α0 ≤ −1.78
(0.0063,0.0445,-0.0170) Patella

Table A.3: Vastus medialis waypoint definition.

P̂i(x,y,z) Segment Range[rad]
(0.0048,-0.1854,0.0349)Femur
(0.0269,-0.2591,0.0409)Femur
(0.0361,-0.4030,0.0205)Femur −3.0≤ α0 ≤ −1.21
(0.0253,-0.4243,0.0184)Femur −3.0≤ α0 ≤ −1.92
(0.0103,0.0423,0.0141) Patella

Table A.4: Vastus lateralis waypoint definition.

P̂i(x,y,z) Segment Range[rad]
(-0.1192,-0.1015,0.0695) Pelvis
(-0.0243,-0.0536,-0.0194)Tibia

Table A.5: Semimembranosus waypoint definition.

P̂i(x,y,z) Segment Range[rad]
(-0.1237,-0.1043,0.0603) Pelvis
(-0.0314,-0.0545,-0.0146)Tibia
(-0.0113,-0.0746,-0.0245)Tibia
(0.0027,-0.0956,-0.0193) Tibia

Table A.6: Semitendinosus waypoint definition.

P̂i(x,y,z) Segment Range[rad]
(-0.1244,-0.1001,0.0666)Pelvis
(-0.0081,-0.0729,0.0423)Tibia

Table A.7: Biceps femoris (long head) waypoint definition.
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B Exoskeleton Geometry

The actuator torque,TA, the actuator is producing is computed from the force sensor
measurement,FA, with the joint angle,α0, through

TA = −FA
Ps

xPs
y −Ps

y(P
s
x +d2)

√

(Ps
x +d2)2+Ps

y
2

(B.1)

with Ps
x = d1cos(αts−α0)

Ps
y = −d1sin(αts−α0)

αts = αt +αs

(B.2)

−α

αα

d d12Thigh Brace
Shank Brace

t s

0

J0

J2 J1
Actuator

Figure B.1: Geometry of the actuator attachment: J0 is the supported joint, J1 and J2
the joints with which the actuator is attached to the braces covering the limbs.α0 is
the joint angle, andαs andαt are displacement angles.

whered1 is the distance from the supported joint (J0) to the first point where the
actuator is attached to the exoskeleton (joint J1),d2 is the distance from J0 to the
second point where the actuator is attached to the exoskeleton (joint J2), andαs and
αt are displacement angles to avoid singularities when the joint angles is 0, as shown
in figure B.1. The required parameters are:αts = 0.579rad,d1 = 0.061m, andd2 =
0.362m.
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C Parameters of the Rigid Body
Models

Table C.1 describes all parameters that are used in the dynamic model in section 8.1.
The location of the center of mass has been moved towards the pelvis to suppress the
strong influence of bad trunk angle measurements on the system behavior.

Segment mseg[kg] L[m] W[m] r
Upper body 60.00 0.60 0.60 0.200
Thigh 8.73 0.50 0.25 0.433
Shank 5.05 0.48 0.20 0.433
Foot 1.26 0.30 0.06 0.429

Table C.1: Data of the body segments: relative segment massmseg, segment length
L, segment widthW, and the location of the center of mass in relation to the segment
length,r. Figures, exceptru for the upper body, can be found in [Win90a].

Table C.2 shows the points of origin and insertion used for the body models. The
points have been chosen by hand. The given relative coordinates have to be multiplied
by the length and width of the body segments to obtain the actual coordinates.

Muscle Origin Insertion
Hip flexor (0.10,−0.10) (0.20,0.10)
Hip extensor (0.00,0.05) (0.05,−0.05)
Knee flexor (0.10,−0.05) (0.10,−0.04)
Knee extensor (0.09,0.05) (−0.03,0.04)

Table C.2: Points of origin and insertion of the muscles included in thebody model
for the knee.
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C Parameters of the Rigid Body Models

Table C.3 describes all parameters that are used in the modelpresented in sec-
tion 8.2. The total body mass ismtotal = 83kg.

Segment mrel L[m] W[m] r
Upper body 0.6280 0.60 0.60 1.200
Thigh 0.1000 0.50 0.25 0.433
Shank 0.0465 0.48 0.20 0.433

Table C.3: Data of the body segments: relative segment massmrel, segment length
L, segment widthW, and the location of the center of mass in relation to the segment
length,r. Figures, exceptru for the upper body, can be found in [Win90a].
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D Subspace Search Algorithm

This algorithm is used to determine the EMG-related parameters during calibration
described in section 5.6.

In every iteration, this algorithm calculates the error function E(A,S,m) at nA ×
nS points in the 2-dimensional space. It selects the minimum inthe subspace and
reduces the search interval to the dimensions of the step size around the minimum.
The algorithm stops, when the size of the search space is smaller thanεA andεS in the
dimensions ofA andSrespectively.

As, Ae: boundaries for the shape interval:A∈ [As,Ae]
Ss, Se: boundaries for the scale interval:S∈ [Ss,Se]
nA : number of search points in shape interval
nS : number of search points in scale interval
repeat

A∆ = (Ae−As)/nA

S∆ = (Se−Ss)/nS

Eopt = ∞
for A = As to Ae do

for S= Ss to Se do
Error= E(A,S,m)
if Error< Eopt then

Aopt = A
Sopt = S
Eopt = Error

end if
S= S+S∆

end for
A = A+A∆

end for
As = max(Aopt−A∆,As)
Ae = max(Aopt +A∆,Ae)
Ss = max(Sopt−S∆,Ss)
Se = max(Sopt +S∆,Se)

until Ae−As < εA andSe−Ss < εS

While not being very optimal in terms of computational cost,the algorithm is quite
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D Subspace Search Algorithm

robust against running into local minima. As long as the global minimum is not located
in valleys more narrow than the interval width divided by thenumber of search points
for every dimension, it will be found.
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