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Abstract

Exoskeleton robots are mechanical constructions
attached to human body parts, containing actuators for
influencing human motion. One important application
area for exoskeletons is human motion support, for
example, for disabled people, including rehabilitation
training, and for force enhancement in healthy subjects.
This paper surveys two exoskeleton systems developed
in our laboratory. The first system is a lower-extremity
exoskeleton with one actuated degree of freedom in the
knee joint. This system was designed for motion support
in disabled people. The second system is an exoskeleton
for a human hand with 16 actuated joints, four for each
finger. This hand exoskeleton will be used in rehabilitation
training after hand surgeries. The application of EMG sig-
nals for motion control is presented. An overview of the
design and control methods, and first experimental
results for the leg exoskeleton are reported.

Keywords: human body model; human-machine inter-
action; powered orthosis.

Introduction

One of the key issues for successful application of exo-
skeletons is reliable motion control. The challenge is to
achieve cooperation between the human and the robot
with permanent direct contact. Depending on the appli-
cation, different approaches can be applied to realise this
cooperation. One possible approach is to suppress the
human influence on the exoskeleton, as demonstrated in
pioneer work carried out by the Vukobratovic group at
the end of the 1970s using a full-body exoskeleton robot
in walking support of a fully paralysed patient w1, 2x. The
exoskeleton was moved along precomputed trajectories,
which were slightly modified by a motion controller to
maintain balance. However, most practical applications
of exoskeleton robots need to account for human
motion, and reaction to the imposed motion or even
detection of the human intention to perform some tasks.

The common approach to control exoskeleton robots
is based on using force sensors w3, 4x. In this approach,
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force sensors are placed between human body parts and
the mechanical construction or between different parts
of the mechanical construction. The force signal serves
as a measure of the discrepancy between motion desired
by the subject and the real motion of the exoskeleton.
The advantage of this method is the simplicity of the
force signal measurement: once calibrated, the force
sensors provide reliable signals. However, there are pro-
blems in using this approach. The first problem is related
to natural delay in the control loop, which is caused by
neuronal signal propagation from the brain to the mus-
cles, as well as by biomechanical characteristics of the
muscle contractions and limb motion. This delay leads
to problems in using large gains in the motion control
loop (desired for better system performance).

The second problem occurs if the mechanical con-
struction is in contact with the environment: It is difficult
to separate the measured force signal from the subject
and from the environment. Unfortunately, these situations
occur regularly in practice, e.g., during foot contact with
the floor.

In our opinion, the use of EMG signals in control has
the potential to improve the performance of exoskeleton
devices. Measured EMG signals are related only to the
subject’s intention (for healthy individuals), so that the
above-mentioned ambiguity in force sensor signal during
contact with the environment is avoided. Theoretically,
proper interpretation of EMG signals should allow com-
putation of the desired human motion in advance –
before the muscles contract and reaction with the me-
chanical construction takes place. Therefore, the delay
described in the control loop can at least be reduced.

In this work, two different approaches for application
of EMG signals for motion control of exoskeleton robots
are presented. In the first approach, called a dynamic
human body model (DHBM), the intended human motion
is calculated using EMG signal processing and an elab-
orate biomechanical model of the human body. The pre-
dicted human motion (positions and velocities) is used
as input for actuator controllers. In the second approach,
called direct force control (DFC), the EMG signals are
converted to forces acting on limbs and compared to
current forces measured in actuators attached to the cor-
responding limbs. The difference between these forces
is used as input for the actuator controller.

In both approaches the EMG signals are directly incor-
porated in the control loop, in contrast to the HAL system
w7x, where the controller feedback signal is based on joint
angle measurements, and EMG signals are used to cal-
culate a correction term for system input.

One of the main issues of the approaches presented
is conversion of the measured EMG signals into muscles
forces (often referred to as a myoprocessor in the liter-
ature). The EMG signals depend very much on the sub-
ject, on skin properties such as skin moisture, as well as
on muscle fatigue. The main contribution of this paper is
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Figure 1 Leg exoskeleton composed of the orthosis with an
actuator and sensors.

Figure 2 Hand exoskeleton with the mechanics for 16 degrees
of freedom (motor unit not shown).

the adaptive algorithm presented for the myoprocessor
and integration of the calibration procedure necessary
into the system. In contrast to other work w5x, we use a
simplified model for the EMG signal-muscle force rela-
tionship with only a few parameters. EMG-driven motion
control is then demonstrated on a leg exoskeleton,
whereas Rosen et al. used an arm exoskeleton w5x with
a method similar to the DFC approach.

Both approaches presented in this work are based on
physical models with some simplifications and parameter
adaptations. Other groups have reported interesting
results using neuro-fuzzy techniques for control of exo-
skeletons by means of EMG signals w6x.

The paper is organised as follows. First, the leg exo-
skeleton is described (Figure 1). The DHBM and DFC
approaches are explained and compared, and experi-
mental results are presented and discussed. Second, the
hand exoskeleton (Figure 2), and algorithms for its control
are described. Finally, conclusions are drawn.

Exoskeleton for the leg

The current system is composed of an orthosis with an
actuator, a microcontroller connected to a PC, and EMG,
force, and Hall sensors. The linear actuator is attached
between the thigh and shank with a force sensor in-line
to generate the supporting torque in the knee (Figure 1).

Data acquisition and processing

Three Delsys 2.3 differential electrodes (Delsys, Inc.,
Boston, MA, USA) are placed on the rectus femoris, vas-
tus lateralis, and semitendinosus muscles in the thigh.
These muscles were selected because of their large con-
tribution to knee flexion and extension torque and for
ease of recording.

The electrodes have an inbuilt amplifier with a gain of
1000 V/V and a bandpass filter between 20 and 450 Hz.
The EMG and force signals are sampled with a 12-bit
A/D converter. The knee angle is measured using a Hall
sensor and is also digitised.

Recorded EMG signals are offset-corrected, rectified,
and low-pass filtered with a second-order Butterworth
filter with a cutoff frequency of 2 Hz, leading to the post-
processed signal sn(t), where n is the index of the elec-
trode and muscle.

The force measurements are also low-pass filtered at
2 Hz during calibration to avoid misalignment of data.
During normal operation mode, unfiltered force values
are used.

Muscle and actuator models

Both control loops that are presented in the Control me-
thods section need estimations of the muscle forces that
the operator produces to derive the necessary support.
The post-processed EMG signals are converted into
muscle forces by the EMG-to-force function (based on
w8x):

-1ØA s Øsn n n,maxe -1
F s s Øf ,Ž .n n n,maxAne -1

where n is the muscle index, An defines the shape of the
curve, and fn,max is the maximum force output for the
maximum EMG signal sn,max. The parameters An and fn,max

have to be calibrated for each muscle. The resulting knee
torque is:
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Figure 3 Orthosis and the dynamic body model system.
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where N is the number of muscles measured. The knee
joint lies at the origin of the coordinate system. On and In
are the origin and insertion of muscle j in the thigh and
shank, and were chosen by analogy to human anatomy.
No other properties of the human body are taken into
account. The torque produced by the actuator is calcu-
lated as follows. The values of the force sensor attached
to the shaft of the actuator are converted into the knee
torque contribution Tactuator through the moment arm of
the actuator.

Control methods

Two approaches were investigated by our group: the first
utilises a dynamic human body model, and the second
DFC of the actuator.

In both systems, a hierarchy of two control loops
exists. The high-level control loop evaluates EMG signals
and the current state of the human body and the ortho-
sis. The output of this loop is the desired motion express-
ed, as either the desired knee angle or torque. The low-
level loop controls the actuator with a PID controller.

Dynamic human body model

The general idea is to simulate a simplified dynamic mod-
el of the human body that is affected by three muscles
spanning the supported knee and external reaction forc-
es applied to both feet and hip. As shown in Figure 3,
the recorded EMG signals are converted into muscle
forces and used as an input to the body model together
with the joint angles and floor contact information. The
model outputs the desired knee angle of the operator,
which is passed to the low level control loop as the target
value. The model computation is performed by solving
the system of equations

˙M q usf q,u qg q TŽ . Ž . Ž .

for u (forward dynamics) and T (inverse dynamics), where˙
q is the vector of generalised coordinates for the joint
angles and coordinates of the reference point (sagittal
plane only), u is the vector of generalised velocities qsu,˙
M is the mass distribution, f represents inertial forces and
gravity, T takes into account all joint torques and external
reaction forces at the feet, and g(q) is a non-linear func-
tion representing the current system configuration and
geometry.

To be able to calculate the accelerations u, the external˙
forces and joint torques T that affect the model have to
be calculated. The torque in the supported knee joint is
calculated by evaluating the EMG signals. All other joint
torques and external forces are approximated by com-
puting the inverse dynamics with the current kinematic
data for the system. The resulting torques and forces are
assumed to be constant for a small time-step and used
as the needed values for T during forward dynamics
computation (very rough approximation). The body mod-
el is simulated for a small time-step of Dts 20 ms, and
the resulting knee angle is passed to the low-level loop
and converted into encoder ticks of the actuator to allow
position control. Owing to the amount of computation,
the high-level loop runs at 100 Hz, whereas the low-level
loop runs at 1 kHz.

If a greater number of actuated joints are added, the
overall model complexity is similar: inverse dynamics
computation for this joint is no longer needed, but the
EMG signals from additional muscles have to be evalu-
ated and the corresponding elements of u have to be˙
computed and integrated for the controller.

Direct force control

The DFC method does not use a dynamic model. As in
the previous approach, the resulting knee torque from the
muscle activation Tknee is calculated in the high-level con-
trol loop from the EMG signals. This can be interpreted
as the torque contribution of the operator to the motion.
The supporting torque Tsupp is calculated by multiplying
Tknee by the amplification factor Sampl, which can be cho-
sen according to the support required (the upper bound-
ary of Sampl has to be determined experimentally). Tsupp

forms the target value for the low-level loop (Figure 4).
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Figure 4 Orthosis with the operator and the direct force control
system.

Figure 5 Knee angle and torques during the experiment with a support of 0.0 (top) and 1.0 (bottom).

The error input of the P controller is calculated accord-
ing to:

EsT -T .supp actuator

Both loops run at a frequency of 1 kHz.
The complexity increases linearly with the integration

of additional joints.

EMG parameter calibration

In both approaches, the parameters An and fn,max of Fn(t)
need to be determined. Unfortunately, the relationship
between muscle activation and the EMG signal depends
on many different factors, such as electrode placement,
muscle size, moisture on skin, etc. These parameters
have to be calibrated at the beginning of every experi-
mental session. The calibration is performed using iso-
metric contractions of the knee flexor and extensor
muscles without floor contact for the rectus femoris and
semitendinosus muscles. Currently, the vastus lateralis
muscle is not optimised automatically.

The idea of the calibration algorithm is to store the
EMG and force values in tables. Each muscle has an

associated table and every entry of the table contains the
activations of all recorded muscles and the force value
from the same point in time. The table entry where the
values are stored is selected by a linear function that
maps the activation of the muscle to which the table
belongs to an entry index. This ensures that for the fol-
lowing optimisation process data with many different lev-
els of activation are used without letting the amount grow
unreasonably high or weighting certain activations
stronger because of longer durations. The error function
of the optimisation process calculates the sum of the
squared differences between Tknee and Tactuator for all
entries. The optimisation yields values for An and fn,max

(the parameters are bounded, and sub-space searching
is possible).

Experimental results

The experiment presented here is a typical example from
a series and consists of climbing a single step with two
different levels of support in which the supported leg ini-
tiates the motion. The experiment was performed with a
healthy person and the DFC method. Figure 5 shows the
knee angle, together with the torque computed from the
EMG signals and the torque produced by the actuator.
The leg is straight at an angle of 08, and negative angles
indicate knee flexion. The upper diagram shows the
motion without support (the supporting torque is almost
zero during the motion, the orthosis is ‘‘evading’’ the leg),
and the lower diagram shows motion with support of 1.0:
the actuator torque contribution follows the torque pro-
duced by the muscles. As expected, the knee torque
derived from the EMG signals is significantly lower com-
pared to the trial without support. At ts3.8 s, an over-
shoot can be observed: the operator was activating his
muscles as usual, but when the feedback of the actuator
support was recognised, muscle activation was imme-
diately reduced. This results in a dent in the angle trajec-
tory after ts4.1 s. At ts4.3 s, the operator increases
muscle activation again to finish the motion with a sec-
ond small overshoot.
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The actuator support is documented by the force that
is added to the system, resulting in decreased muscle
activation over the whole motion compared to the unsup-
ported motion, as can be seen in Figure 5.

Discussion

Both of the above-mentioned algorithms can be used to
control an exoskeleton, but there are differences in appli-
cation, as well as in the ease of use.

The DHBM approach is more complex in terms of the
calculations necessary. To obtain a solution to the inverse
dynamic calculation that represents muscle activation or
influences by external contact forces, all sensor data
have to be accurate and consistent. Only during experi-
ments in which the supported leg had no contact with
the environment was this possible. During experiments
involving climbing a step, inconsistent sensor readings
lead to partially incorrect target motions. On the other
hand, this algorithm calculates the trajectory of the hu-
man body, and allows integration of algorithms to main-
tain stability based on solving dynamic equations with
motion constraints. It is also possible to predict the
intended motion as if the orthosis is not attached to the
subject by disregarding it during forward dynamics
computation.

The DFC method is more robust because the influence
of all properties such as inertia, joint velocity, and unmea-
sured muscle activations, as well as all external contact
forces, are implicitly taken into account by the force sen-
sor, regardless of where they act on the operator or the
orthosis. The force sensor acts as a substitution for the
body model. The computation is not performed by sim-
ulation, but by measuring the resulting behaviour of the
body parts in reality. No data between sensors can be
inconsistent. Integration of algorithms solving postural
stability issues is not possible, since no constraint equa-
tions can be solved without introducing a dynamic model
again.

Interestingly, although calibration of the muscle para-
meters and the muscle model is very simple, support of
the motion is possible.

Although the exact amplification factor of the opera-
tor’s muscle force is unknown (because the calibration
uses only a few representative muscles from different
groups), significant support can be achieved. The abso-
lute torque support can be read from the force sensor.
An important aspect is that the trajectory of the knee
angle was similar in both trials, showing that the operator
was able to adapt to the support. Currently we have no
objective criterion for evaluating the quality of the
support.

The main focus now is on improving the DFC method
in terms of the interaction between the operator and the
orthosis to smooth the executed motion and minimise
undesired overshoots.

Exoskeleton for the hand

The hand exoskeleton was designed to support rehabil-
itation and diagnostics after hand surgery or stroke. The
following motions are supported in each finger: flexion
and extension of the metacarpophalangeal (MCP), prox-

imal interphalangeal (PIP) and distal interphalangeal (DIP)
muscles, and abduction/adduction in MCP joints. The
thumb is currently not actuated. The palm is free of
mechanical elements to allow interaction with the envi-
ronment. The fingers are moved by a construction of lev-
ers actuated through pull cables guided by flexible
sheaths (Figure 2). Pulleys at the levers allow bidirectional
movement.

Finger joint angles are measured by Hall sensors inte-
grated into the mechanical construction. Angles of the
axes at the motor units measured by optical encoders
correspond to the angles measured by the Hall sensors.
Because of varying tension in the connecting cables,
both values for joint angles deviate. Force sensors inte-
grated between the levers and finger attachments meas-
ure forces during flexion and extension at the finger
joints. Surface EMG electrodes (Delsys 2.3) measure
muscle activity at eight points on the forearm.

Control methods

Currently the hand exoskeleton supports two control
modes based on joint angle and force sensor values.
EMG sensors can be used for diagnosis, but are not used
for control yet.

The first control mode allows trajectories determined
by the supervisor (e.g., physiotherapist or physician) to
be followed. This allows reliable repetition of exercises
with high accuracy. Force and EMG sensor readings
allow the progress of rehabilitation to be assessed.

The second control mode uses force sensors to deter-
mine the motion of the exoskeleton. The force sensor
readings are used to calculate a motion using an open-
loop admittance control scheme. The exoskeleton can
thus follow the motions of the hand. This control mode
is needed to teach new motions and is useful for diag-
nostic purposes.

However, as mentioned earlier, the force sensors can-
not distinguish between internal and external contact
forces. Therefore, they are insufficient to measure the
subject’s motion intention during contact with the envi-
ronment (e.g., grasping), which is common during reha-
bilitation. Integrating a greater number of force sensors
to distinguish between internal and external forces is not
practical for the hand exoskeleton owing to the constrict-
ed space.

EMG for control of hand motions

Similar to the leg exoskeleton, EMG sensor data can be
used to control the hand exoskeleton without measuring
all contact forces. However, there are several difficulties
in application of the algorithms.

The first problem is that not all muscles responsible for
hand motion can be measured by surface EMG sensors.
Thus, only a subset of the muscles responsible for finger
and hand movement is sampled by surface electrodes.
Therefore, it is not possible to use EMG signals alone to
control arbitrary motions in all supported degrees of
freedom.

The second problem is that, owing to the high density
of different muscles in the forearm, EMG signal separa-
tion is particularly relevant. For later application, the sig-
nals have to be processed to recover the underlying
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original signals. As described by Farina et al. w9x, blind
source separation can be used to solve this problem.
After separation, the signals can be used for control pur-
poses. Physicians can also use the recovered muscle
signals in concert with the motion and force data for
diagnosis.

Another idea is to use EMG signals to recognise the
user’s intention for a specific gesture (e.g., grasping an
object, pointing at something). EMG-controlled prosthe-
ses that do this are commercially available. However,
these devices often evaluate muscles that are not natur-
ally used for controlled movement, as the original mus-
cles are no longer fully functional. These devices require
some training of the patients. Zecca et al. described the
control of multifunctional prosthetic hands by EMG sig-
nals w10x.

However, the exoskeleton is intended for use during
rehabilitation of patients where muscle signals may be
available. Therefore, muscles that are responsible for
controlled movements will be used to control the hand
exoskeleton. Several groups used this approach to con-
trol other devices, such as hand prostheses and robotic
hands w11x. Benjuya and Kenney reported on a simple
hand orthosis with one degree of freedom controlled by
EMG signals w12x.

The hand exoskeleton presented here will be used to
extend existing work on EMG motion control to more
complex movements. For application of the direct-force
control method presented in the Control methods sec-
tion, several modifications are necessary. The first step
is blind source separation of the measured muscle sig-
nals. Second, force contributions of muscles that are not
measured by EMG sensors have to be estimated. One
method is to derive these from measured muscle signals
by assuming a specific gesture that can be identified by
pattern recognition. After these steps, the DFC or DHBM
method can be used to control the resulting motion. Fur-
ther research needs to identify which of the two methods
is superior for the hand exoskeleton because of multi-
articular muscles.

Conclusion

The application of EMG signals for controlling exoskele-
ton robots was demonstrated for the leg exoskeleton.

The application of EMG signals can improve control
schemes for exoskeleton robots based on force sensor
measurements. This was shown with experimental
results presented for the leg exoskeleton. For this sys-
tem, different control schemes were described. An inter-
esting fact is that even simple control schemes based on
EMG signals without complicated dynamic models pro-
vide remarkable performance. In addition to the advan-
tages for motion control, integration of EMG sensors into
exoskeleton robots opens interesting new applications in
rehabilitation and diagnostics.
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