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Abstract— In this paper, the design of a hip joint of an exoskeleton is presented so as to automatically assist the hip joint 
motion of a physically weak person. A spherical three-degrees-of-freedom parallel mechanism is used for the purpose. The 
problem is framed as an optimization problem with an objective of determining the proper connection points for the links of the 
structure at the human body, keeping in account the aspects of self-collision, human anatomy and comfort. The design 
parameters are optimized for a specific pose and the workspace around this central configuration is built to develop enough 
mobility required for the human body to attain different postures.  
 

I. Introduction 
 

Recent progress in the robotic technologies brings a lot of benefits not only in industries, but also in amusement, welfare and 
medicine. Research in the process of rehabilitation is of vital interest and there lies the development of exoskeletons. 
Development task of first practical models of human exoskeletons have been taken up by some companies and research centres 
in recent years [1, 2]. This paper proposes the design of a hip joint of a human exoskeleton to automatically assist the hip joint 
motion of a physically weak person such as elderly, disabled or injured one. The task is not smooth because the goal here is not 
just to develop a working mechanism. As this mechanical structure is to be carried by a human body, it needs to fulfill a couple 
of factors. First, it should be light in weight. Secondly, the location of the connection points and the shape of the links should 
not cause discomfort to the person in any of the postures.  This complexity of mechanical structure is one of the reasons why 
very few researchers have worked on exoskeletons, even though there are many interesting applications. One such structure 
was designed and presented by Kondak et al [3], based on the Stewart platform. Although the design shows good performance, 
it requires six actuators for the purpose, thus implying higher cost and weight. Since all 6-dofs are not needed for the actual 
purpose, working out an alternative with lesser degrees of freedom is surely worth paying attention. In the present design, we 
use a sophisticated three-actuator spherical structure to acquire all necessary movements for a human hip joint.  

 
The rotational mechanism used is a member of a class of spherical mechanisms in which all axes intersect at a point located at 
the centre of the mechanism. As the human hip joint can be approximated by a spherical (ball and socket) joint, locating the 
rotational centre of the spherical mechanism at the hip joint makes it suitable to represent the hip joint motion. The mechanism 
used consists of three structurally identical kinematic sub-chains connecting the base of the structure to the common platform, 
as shown in Fig. 1. On each chain, there is one actuated revolute joint and two passive revolute joints. The three motors of the 
manipulator are fixed at the base. This can be viewed as representing waist of the person as the base of the mechanism and the 
thigh playing the role of the platform. So, three actuators (one at the base joint of each chain) would supply moments needed to 
keep the platform (human thigh) in the required orientation. 

 
The design problem of the mechanism has been framed as an optimization problem of determining the fixed geometric 
parameters, keeping in account the constraints over these design parameters. For optimizing the mechanism structure, the 
kinematic equations and Jacobian matrix are derived. The kinematic analysis of the spherical mechanism has been addressed 
earlier by many researchers [4-7], but these references have used a few symmetric features in the mechanism.  No such 
assumption on symmetric architecture has been used in this paper as that restricts the choices for synthesis of the manipulator. 
Derivation of kinematic equations, similar to one given in Gosselin et al [4], for the general spherical manipulator is carried 
out. The condition of the Jacobian matrix of the manipulator is taken as the performance metric for the design purpose [3, 8-



10]. The parameters are optimized for a specific configuration and then the workspace around this central configuration is 
examined. The results of this workspace analysis portray the success of the design by showing enough mobility for the human 
hip.  
 

 
Figure 1: Schematic of 3-DOF parallel mechanism for an exoskeleton hip 

 
 

In the next section, the kinematic equations for the mechanism are developed. The section also includes the Jacobian 
calculations. In section III, the formulation of the optimization problem is presented along with the discussion of its solution. 
Section IV is devoted to workspace analysis around the central configuration and finally, in the last section, contributions of 
the present work are summarized. 

 
II. Manipulator Kinematics 

 
A. Spherical mechanism – conventions and notations 
 
The mechanism under study is a spherical mechanism in which rotary axes of all the links intersect at a single point located at 
the centre of the mechanism. The three structurally identical chains of the mechanism, connecting the waist of the human body 
to the thigh, have one actuator and two passive joints each. The three actuators are fixed at the base of the mechanism. The 
point of concurrency, O of all axes is located at the hip joint of the human body. All the links of the spherical manipulator 
move on a sphere with centre at O. This point is taken as the origin of all the reference frames of the mechanism which 
provides pure rotation of each frame with respect to another.  
 
For the frame assignments and definition of the axes, suffix ‘ i ’ represents the corresponding chain with 1,2,3i = . 0R , with 
axes 0 0 0, ,x y z , is taken as the base reference frame, as shown in Fig. 2. A frame is assigned to each link in such a way that z -
axis is directed along the joint axis. For the frame attached to each of the base links, the x -axis is taken as orthogonal to the 
corresponding actuator axis and to 0z . The link angle ijα expresses the angle between the j th− and ( 1)j th+ − axis for each 

leg, for 1,2j = . These are fixed parameters to be defined as part of the mechanism geometry. The actuator angles iθ  denote 
the rotation of actuator links about motor axes. Using these, the frames associated to the intermediate joints for each leg are 
defined by following the Denavit-Hartenberg (DH) conventions 



 
 

Figure 2: Geometry of the base link 
 
 

.B. Kinematic equations of mechanism 
 
Kinematic analysis of spherical 3-dof manipulator has been studied by a few authors to a great extent, but these references have 
presented the formulations based on certain assumptions in its architecture. This helps in reducing the level of complexity but 
with a loss of generality.  A spherical mechanism investigated by Gosselin [8], though general comparatively, has also used an 
assumption of symmetric legs (chains). The kinematic equations worked out and used in this paper are free from any such 
assumption, although similar in steps of development. This provides a larger search space for synthesis. 
 
The representation of iu , the unit vector along the i th− actuator axis, in 0R is given by  

                                                                           1 1 3( , )i i i iu R eβ µ= ,                                                                                (1) 
where, iR is the rotation matrix representing the orientation of the frame associated to actuated joint of leg i with respect to the 
base frame, for 1,2,3i = . It is defined by using angles 1iβ and 1iµ , that iu makes with negative of 0z and the x -axis of the 

actuator frame makes with 0x , respectively, and is given by 
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Using the DH notation for the DH parameters ijα and iθ for each leg i , the intermediate axes iw are computed as 
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and hence, the expression of iw in frame 0R is given by 

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

cos sin cos sin cos sin sin sin sin cos
sin sin cos cos cos sin sin cos sin cos

sin sin sin cos cos

i i i i i i i i i i

i i i i i i i i i i i

i i i i i

w
µ α θ µ β α θ µ β α
µ α θ µ β α θ µ β α

β α θ β α

+ + 
 = − − 
 − 

.                              (3) 



To define iv , the unit vector along the end-effector axis of each leg, we use a frame of reference gR which has a fixed 

orientation1 with respect to the base frame, specified by initR  as 
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Thus, with 2iβ and 2iµ as the angles defining end-effector axes corresponding to the two defining actuator axes, iv with respect 

to gR is given by 

2 2 3( , )i i i iv R eβ µ= .                                                                                        (4) 

To express iv  in base frame we define 1φ , 2φ , 3φ  as the roll, pitch, yaw angles, respectively and obtain 
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where ic and is  denote the cosine and sine of iφ , respectively, for 1,2,3.i =  

The relation between iw  and iv  presents the kinematic equations for the manipulator as 

2. cosi i iw v α= , 1,2,3.i∀ =                                                                                    (6) 
 

C. Jacobian matrix 
 
The Jacobian matrix of spherical mechanism relates the joint velocities of the manipulator to the end-effector velocities. In 
serial manipulators the relation is expressed by the equation Jω θ=  with J as the Jacobian matrix. On the other hand, in 
parallel actuated manipulators, the mapping is expressed in reverse order and is defined as Jθ ω= . The Jacobian matrix of a 
spherical mechanism, as presented in [3], is given by 

1J B A−=                                                                                                  (7) 
where 

( ) ( ) ( )1 1 2 2 3 3
TA w v w v w v = × × ×  , 

[ ]1 2 3, ,B diag c c c=  with ( ).i i i ic u w v= ×  

for each leg i . This expression for the Jacobian matrix has been used to characterize the kinematic accuracy of the manipulator 
in the next section. 
 

III. Mechanism Optimization 
 
A. Optimization problem formulation 
 
The goal of the design problem of this paper is to determine the locations of the points connecting the links of the spherical 
mechanism to the frame worn by the human body, taking into consideration the constraints on the design parameters to avoid 
self-collisions and to be around the human body measurements. This problem can be defined and solved as an optimization 
problem. To proceed for that, we choose a mean configuration2 for which the mechanism will be optimized and the solution 

                                                 
1 To have better intuitive feel and to represent the end-effector axes similar to actuator axes 
 
2 A configuration here is meant by posture of the human body and defined by the required orientation of the platform (thigh) frame with 
respect to the base (waist) frame. 



will then be used for the analysis of the mechanism for different configurations around this central one. For the purpose, we 

select values for 1 2 3, ,φ φ φ as 0, , 0
4
π − 

 
 respectively, to represent the mean configuration. This is the estimated mean 

position of the predicted workspace. 
 

To formulate the optimization problem, the first step is to select the objective function. An important consideration in the 
manipulator design is its dexterity that signifies how easily and accurately the object can be manipulated. As the focus of this 
paper is towards kinematics of the mechanism, the Jacobian of the manipulator serves well to characterize the measure of 
dexterity. Therefore, the condition number3 of the Jacobian matrix, given in Eqn. 7, is taken as the objective of the design 

problem. In this paper, the condition number is computed as 1( ) || || || ||J J Jκ −= , where || . ||  denotes the norm of the matrix 

argument and taken as Euclidean norm given by || || Trace( )TJ JWJ= with 
1 1 1diag , ,...,
n n n

W  =  
 

, for n number of rows 

of the matrix J .  
 

To remain in the limits of human anatomy and taking into account the comfort of the person in different postures we need to 
apply a few constraints on the problem. Besides, the kinematic equations, derived in the previous section, are to be satisfied by 
the design parameters along with the mean configuration. For the later, we consider kinematic equations as the (non-linear) 
equality constraints of the optimization problem. Now, out of the design parameters, 1iα , 2iα and iθ  are kept within the 
limits ( , )π π− . The parameters 1iβ , 1iµ and 2iβ , 2iµ  describe the locations of the attachment points of the links to the human 
waist and thigh, respectively. The relations between these parameters are illustrated in Fig. 3 (representing the left side of the 
human body). The figure shows the top and front view of human torso around the hip joint4 O . 

 
 

Figure 3: Description of the belt constraints at waist 
 

For a point P on the belt (waist or thigh), β and µ are the corresponding parameters. Connecting the centre of the belt 
region O′ to the point P , we get angleω . As we can intuitively assign limits toω , a mapping between µ andω has been 
worked out to associate the limits of µ  with that ofω  and is derived by equating the definitions of point P  as 

                                                 
3 A linear system with condition number one is perfectly conditioned whereas a very large value of condition number corresponds to its ill-
conditioning. 
4 The location of the human hip joint is taken as according to the human anatomy data. 
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providing the relations as 
sin cos tana b bω ω µ= +                                                                              (8) 

and 
cos

cos tan
bz ω
µ β

= ,                                                                                    (9) 

where a and b are major and minor axes of ellipse and p is the distance between O and .O′  Eqn. 8 is solved numerically using 
Newton-Raphson method to get the value of ω  for each required value of µ and this helps in calculating the limits for the 
former one to keep the later one in prescribed boundaries. Eqn. 9 provides the value of z for known values of β , µ andω , and 
thus helps in computing limits minz and maxz . The limits assigned toω and z are shown in the figure. Similar relations are used 
for corresponding parameters of the thigh but the limiting values are different. The constraints are used as non-linear inequality 
constraints for the optimization problem.   
 
Next to these are constraints employed to prevent the self-crossing of links. This is achieved by putting limits on angles 
between iu ’s and similarly between iv ’s, for 1,2,3i = . Experiments with our program show that limiting the sum of link 
angles for each leg avoids the solutions at boundary.  The optimization toolbox of MATLAB has been used for numerically 
solving the problem, as illustrated below. 
 
B. Results of the optimization  
 
The optimization of the design parameters is performed for a specific posture with values of 1φ , 2φ and 3φ (the angles 
representing the output configuration) as 0 , / 4π− and 0 , respectively. This configuration represents the posture with left thigh 
rotated by 45o  in downward direction which is the estimated mean position of the workspace of interest. The initial values of 
the design parameters are taken as  

 
1 0.5iα = , 2 0.8iα = , 1 0.8iβ = , 2 0.7iβ =      for 1,2,3.i =  

11 0.8µ = , 12 2µ = , 13 3µ = , 21 0.3µ = , 22 1µ = , 23 2.5.µ =  

1 0.8θ = , 2 1θ = , 3 1.5θ = . 
 

For calculations of non-linear constraints in Eqns.8 and 9, values for a , b and p are taken as 20,12 and / 2a , respectively. 
Using fmincon in MATLAB the solution converged in 29 iterations to a function value of 1.06 . The values for design 
parameters corresponding to this converged solution are given in Table 1. 
 

( )i each leg  1α  2α  1β  2β  1µ  2µ  θ  

1 2.0796−  2.0759  0.9814  0.9863  0.4545  0.6834−  2.320−  
2  2.7061−  1.1840  1.0361 0.2416  0.4541 1.8604  1.230−  
3  2.8274  1.5894−  0.5407  0.5032  2.8274  2.8274  2.820−  

Table 1: Solution of the optimization problem 
 

Fig. 4 shows the corresponding plot of all axes and presents the approximate picture of the selected representative pose. It is 
worth mentioning here that the shape of links is not part of the design of this paper and can be selected by the designer based 
on practical criteria. 

 



 
Figure 4: Plot of optimization result 

 
 

IV. Workspace Analysis 
 

With the optimal design parameters in hand, we need to examine the workspace around the central pose to analyse the 
kinematic performance of the resulting structure for different postures. This requires the inverse kinematic equations of the 
mechanism which are easier to solve for a parallel manipulator. The detailed algorithm for solving the inverse kinematic 
problem of a spherical manipulator is presented in Gosselin et al [4]. The workspace analysis has been performed in the region, 
targetted for the manipulator synthesis, defined by the range of the output coordinates as 

 
10.6 0.6φ− ≤ ≤ , 

2/ 2 0π φ− ≤ ≤ , 

30.5 0.5φ− ≤ ≤ . 
 

Now, the actual workspace is rendered by using the approach of fixing one of the output coordinates, 3φ in our case, and 
obtaining the contour plots of the dexterity from the other two. This makes it easy to identify the useful portion of the 
theoretical workspace. The contour plots of Jacobian condition number within domains of 1φ  and 2φ with fixed values of 3φ  at 
6  values ( 0.5, 0.3, 0.1,0.1,0.3,0.5)− − − are shown in Fig. 5.  
 
In the plots, contour curves corresponding to specific values of condition number have been shown for adjusting the number of 
curves and information delivery. The regions with very high condition number are emerging out as peaks and hence providing 
the information of poor transmission characteristics at those set of angles, but it has been observed that even though condition 
number at such regions are larger in comparison to around, but do not go much higher in magnitude and so can be taken as 
manageable configurations. Here, we take condition number more then100 as bad and from the plots we observe that the worse 
values in our case are not more then 45. In the plots a few small regions appear near the boundary where the inverse kinematics 
gives complex results, representing the configurations which are not achievable. 



 
3( ) ( 0.5)a φ = −                                                    3( ) ( 0.3)b φ = −  

 
3( ) ( 0.1)c φ = −                                                    3( ) 0.1d φ =  

 
3( ) 0.3e φ =                                                    3( ) 0.5f φ =  

 
 

Figure 5: Dexterity plots showing sections of Cartesian workspace at different values of 3φ  
 



V. Conclusion 
 

In this paper, an optimal design of an exoskeleton hip-joint has been presented. Kinematic analysis required for the three-
degrees-of-freedom spherical mechanism, used for developing the manipulator, has been derived. The design problem has been 
formulated as an optimization problem and the parameters necessary for developing the manipulator structure are optimized for 
a representative pose. The determination of workspace around the central configuration has been performed. The resulting plots 
depict the performance scenario of the optimized manipulator structure and highlight the ill-conditioned regions. 
While the results yield an acceptable mechanism for the required purpose, dynamic performance was not considered. The 
design is for a disable patient and fast action is not required, so dynamic study of this manipulator is not worthwhile. The 
regions showing the unachievable configurations near the boundary indicate the scope of further study to explore possibilities 
to improve the design. Besides, detailed mechanical design is an important piece of work to be taken up as the next step. 
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