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ABSTRACT
In this paper we present a method to control a one-legged
lower extremities orthosis by analyzing the current trajec-
tory performed with the healthy leg and feeding a proper
- if necessary phase-shifted - trajectory to the disabled leg
encased in the orthosis.

For this, a fast and simple modified version of the
cross correlation is used. The algorithm works on multi-
ple reference curves by minimizing the error between the
reference and the current data by adaptively walking for-
ward through the reference of the healthy leg and reporting
back the reference values for the disabled leg. The pro-
posed method will be part of a control system for an ex-
oskeleton robot that should aid the wearer in everyday-life
situations like walking, standing up and sitting down.

The performance of the presented method was investi-
gated on the leg movement in sagittal plane without contact
to unknown obstacles.
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1 Introduction

Natural locomotion of humans and animals is mostly a peri-
odic movement of the limbs. Depending on the motion, the
lower extremities perform the same possible phase shifted
movement, as e.g. in walking or rising from a chair. So it is
a reasonable idea to derive the motion of one leg from the
motion of the other leg.

When considering an exoskeleton robot for a disabled
person (Fig. 3) there are two main aspects that have to be
regarded: First, the motion intention of the subject must
be detected. This can be done in various ways, for ex-
ample with force sensors or electromyographical signals
(e.g. [1–4]). On the other hand, it must be guaranteed that
the system is stable during the motion because the disabled
person might not be able to maintain stability. Most studies
in the field of biped robots are without any human inter-
action [5–8] or without integrating the subject directly into
the control loop which is desirable for an exoskeleton ro-
bot.

1.1 Idea

In this paper we are presenting a new method of combined
intention detection and calculation of a proper motion tra-
jectory for the legs: The idea is to get the intended motion
from the healthy leg, and compute an appropriate trajectory
for the disabled leg.

The advantage of this approach is obvious: There
is no need for complicated calibration of EMG-signals
or force-sensors and the simplicity of the sensors utilized
promises an easy-to-use interface for everyday life. For
paralyzed people it is especially useful, since there is
no possibility to record muscle signals from the disabled
leg. In contrast to other input interfaces using gestures or
speech, the proposed algorithm can be used very intuitively.

Of course there are some drawbacks: All movements
have to be initiated with the healthy leg so that the intention
can be derived, and predefined trajectories are always lack-
ing certain flexibility of other approaches. But in Sec. 6
some ideas are presented to deal with those problems.

1.2 Goal

With recorded reference patterns for the different motions it
should be possible to identify the currently performed one
and the current position within the trajectory. The retrieved
control vectors can be brought directly into the control loop
of the exoskeleton motion controller to allow the user to
have a normal movement with a very small time delay, even
if the subject cannot perform the motion on its own.

The paper is organized as follows: Sec. 2 gives an
overview of the whole system with the orthosis, actuator
and the motion capturing system including filtering of the
sensor data. In sec. 3 the correlation algorithm is explained
in detail and in sec. 3.3 the properties of the suggested
approach are summarized. The experimental setup is de-
scribed in sec. 4. Results demonstrating the performance
of the algorithm are presented in sec. 4 and discussed in
sec. 5.



2 Environment

In this section, the software and hardware environment is
described in which the correlation algorithm is embedded.
Please refer to Fig. 1 for an initial overview of the whole
software system and to Fig. 3 for the hardware of the ex-
oskeleton.
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Figure 1. General control scheme for a mechanical system
attached to the human body. The sensor data S(t) from
the Human are given into each Correlation instance. In
there the correlation Ci were calculated. The Correlation
Selection block take those results and determine, with some
more information, a sensible position and trajectory of the
references. Afterwards the block Desired Position selects
with this Position and Selected Reference the control vector
O(t) for the Motion Controller. This block computes the
control signals for the Mechanical System. Because of the
coupling between the user and the mechanical system, the
user will experience a Force Feedback.

As described in the introduction, the basic idea is to
let the Human interact with the Mechanical System. To
achieve this, the current sensor signals S(t) are read with
1kHz and down sampled to 100Hz from the sensors at-
tached to the orthosis giving the current pose of the subject.

The blocks Correlation take the previously
recorded reference data of the individual motions
{RWalk(t), RUpstairs(t), . . . , RSit−down(t)} and corre-
late them with the current pose data:

Ci(τ) = Ri ◦ S (1)

with τ ∈ {domain of Ri}. The resulting Correlation Data
Ci are then fed into the Correlation Selection box. With ad-
ditional information of the motion and the reference trajec-
tories one reference Rcurrent will be chosen and the cur-
rent position will be determined in a way that only possible
and reachable positions remain. The resulting Position and
Selected Reference is fed into the block Desired Position in
which the suitable Kinematic Data (joint angles and veloci-
ties) O(t) of the reference data will be picked out. The Mo-
tion Controller takes this desired movement and computes
the control signals for the Mechanical System. Because of
the connection between the human body and the mechani-
cal system, the motions of the actuators of the mechanical
system affect the human body (Force Feedback).

The block Correlation and Correlation Selection is
the main contribution of this paper.

In this paper only the movement of the legs in sagittal
plane without unexpected collision with the environment is
considered (refer to Sec. 4 for the experimental setup).

2.1 Measurement System

The measurement system is needed to capture the current
and the reference data of the motion from the limbs and the
torso. Two different systems are used for measuring the an-
gles: The angles for the torso and the thighs are measured
using two axes accelerometers ADXL210 from AnalogDe-
vices Inc [9]. As shown in Fig. 2 the orientation in sagittal
plane can be calculated by projecting the earth gravity field
into the x- and y-axes of the sensor:

qi = arctan 2
(

Gy i

Gx i

)

The hip angles (q1, q4 see Fig. 4) are calculated by
qHip = qTorso−qThigh. To reduce additional accelerations
from thigh and trunk movement, the sensors are attached
as close as possible to the axes of rotation of the joints.
The error is small enough below an angular acceleration
of 45deg

s2 . The sensors unfortunately have a full-range of
±10g, so only 10% can be utilized.
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Figure 2. e.g. Capturing the thigh angle to ground with two
axes accelerometer ADXL210.

For the angles in the knees (q2, q5) and ankles (q3, q6,
see Fig. 4) hallsensors are used, giving analog output pro-
portional to the angles of the joints. These sensors are
mounted on the orthosis (see Fig. 3) and on a small ad-
ditional exoskeleton for the left leg.

2.2 Filtering

For reasons of improved processing of the sensor signals,
noise reduction for the accelerometers is necessary. All
sensor signals will be measured with 1kHz. From this in-
put signal the mean value over the last 50 samples is cal-
culated and down sampled to 100Hz. The averaged and
down sampled sensor data are recent enough to represent
the current situation and show only little noise, so that the
correlation can work properly.



Figure 3. Orthosis with the mounted sensor system and
actuator. [7 degrees of freedom measured, a single one is
actuated] (1) plate with sensor for the trunk [angle relative
to the horizontal line]; (2) sensor for thigh angle to the hor-
izontal line; (3) knee angle sensor; (4) ankle angle senor;
(5)(6) pressure plate to detect the toe and heel contact to
the floor; (7) actuator

2.3 Coordinate System

To understand the diagrams later in this paper this section
describes the coordinate systems of the model. Refer to
Fig. 4 for an overview of the model.
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Figure 4. Definition of coordinate systems and angles be-
tween the body parts: All coordinate systems are ”right
handed systems”, x-axes of all body-parts point along the
bone from the hip, y-axes lie in the sagittal plane, possible
movements are rotations around the z-axes of the coordi-
nate systems, angles order is (hip, knee, ankle), right leg
(q1, q2, q3) and left leg (q4, q5, q6).

For all body-parts the x-axes point along the bone
of the limb away from the hip. The y-axes lie within the
sagittal plane and together with the z-axes they form right
handed systems. All possible movements in the model are
rotations around the z-axes of the coordinate systems. The
angles in the order of hip, knee and ankle are for the right
leg (q1, q2, q3) and for the left leg (q4, q5, q6).

An upright standing human has therefore q1 = q4 =
−180◦ (hip angles), q2 = q5 = 0◦ (knee angles) and q3 =
q6 = 90◦ (ankle angles). The orientation of the torso is
measured between the x-axis of the reference system and

the torso: q9 = 90◦.

3 The Algorithm

The overall goal is to search in the selection of reference
movements Rj(t) with j ∈{Walk, Upstairs, ..., Sit-down}
the closest match to the input signal vector S(t) recorded
from the healthy leg and return the associated control vec-
tor O(t) for the motion of the orthosis-leg.

S(t)⊕Rj ⇒ O(t) with

S(t) =




SleftHip(t)
SleftKnee(t)
SleftAnlke(t)


 ,O(t) =




OrightHip(t)
OrightKnee(t)
OrightAnlke(t)




For this the algorithm is divided in three parts (refer
to sec. 2):

1. Calculate for each reference trajectory the correlation
[Ci(t)],

2. selects the best correlation and determine the best po-
sition representing the current state in the given mo-
tion,

3. generate the control vector [O(t)] for the actuator
controller.

To get better results during the correlation the angles
of the reference curves (especially for the hip) are lowpass
filtered with a cutoff frequency of fc = 5Hz. This is pos-
sible without a time delay, because the complete reference
trajectory is available before the system starts and can be
computed by using acausal filter methods.

3.1 Correlation

The correlation function for finding the current position of
the pose as recorded from the sensors within a given refer-
ence trajectory is defined as follows:

Cl(i, t) =
∑

j

[gj ∗
m∑

k=0

(Sj(t− k)−Rl,j(i− k))2] (2)

where

• Cl(i, t): correlation value for the i-th sample resp. po-
sition of the reference trajectory l at time t

• l: selected reference from the whole set of available
references: {Walk, Upstairs, ..., Sit-down}

• j: all input sensors (angle curves) that should be used
in the correlation function

• gj : the weight value for a specific sensor, to give it an
adjustable contribution to the correlation

• m: length of the correlation windows, the period of
comparing the reference to the actual data



• Sj(t− k) current sensor output with a sensor-specific
history for sensor j

• Rl,j(i − k) reference data of the trajectory l for the
sensor j at position (i− k).

The correlation has some interesting features: The
function works on the difference of the sensor Sj(t − k)
and the reference data Rl,j(i − k), so the DC-offset in
the signals is eliminated [10]. This is necessary be-
cause the DC-offset for the normal cross-correlation term∑m

k=0 [Sj(t− k) ∗Rl,j(i− k)] would wrongly result in
better values for bigger DC-offsets.

Furthermore new trajectories can simply be added
without additional adaption.

Through the offset elimination, comparable correla-
tion results are computed for each sensor. This makes it
possible to fine-tune the correlation through the weights gj .
On the one hand, it is possible to give the individual angle
a higher priority if it is very important for the trajectory,
on the other hand this is useful if the sensor has a great
variance in the reference or to reduce the effect from noisy
sensor values.

The choice of the correct correlation window lengths
is a compromise between a good matching in the position
and disregarding the motion in the joints (derivation of the
angles), longer correlation windows put more weight on the
path of the motion, but makes recognition more difficulty
if the current motion differs too much from the reference.
Currently window lengths of 0.25s (25 samples) are used.

The correlation is defined as a function which is al-
ways positive, returning a minimum for the best matching
and has an evaluation factor for each sensor.
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Figure 5. Correlation of the single signals from the right
hip, right knee and right ankle angle as well as the final
correlation signal. Motion: walk on flat ground, the right
leg swings past the left in this moment. The separate corre-
lations of the joints have no definite minimum, just the sum
gives an unambiguous result.

By using the weighted sum of the correlations for
every single joint angle in eq. 2 the performance of the
correlation algorithm was significantly improved. In fig. 5
one can see the calculated correlations for the single joint

and the sum of the correlations from the trajectory ”walk
straight on” in the moment of the left leg swinging past the
right leg, means both thighs are parallel.

Looking at typical trajectories using the sum of the
separate correlations is not only an improvement, but a vi-
tal property because many correlations have more than one
local minimum. The correlation of the right hip for exam-
ple would have two possible solutions at 1s and at 2.4s.
Other correlations give diverse results partly with multiple
solutions between 2.0s and 2.5s. Generally a single corre-
lation will give ambiguous results, and only the evaluation
of the sum of the correlations gives a good result, like at
t = 1.0s.

3.2 Trajectory Handling

This part of the algorithm implements the general manage-
ment of the correlation data Cl(i, t) (eq. 2) and the refer-
ence trajectories.

Depending on the quality of the signals from the angle
sensors, noisy signals might lead to unwanted jumps while
correlating along the reference trajectory. While jumps for-
ward might be normal and indicate that, the subject is mov-
ing (maybe faster as usual) along the predefined trajectory,
backward jumps are to be avoided in any case to omit vibra-
tions in the signals of the Motion Control Unit that would
result in strain on the subject and the mechanical construc-
tion.

To avoid moving backwards along the trajectory, only
a small region in the near future of the position calculated
during the last cycle (of the currently selected motion) will
be regarded. This means that the calculated position within
the data can never go back for reasons like measurement
errors or sensor inaccuracy.

Since one reference trajectory only contains a single
period of motion it is possible to loop through trajectories
for a continuous motion.

To change from one trajectory to another, special re-
gions in the reference trajectories are defined to indicate
compatibility with other trajectories. This compatibility
means that it is safe to switch from one trajectory to another
and will not result in unwanted jerks. To avoid repeatedly
quick switches between trajectories in transition regions, a
hysteresis-function will be introduced to keep track of the
correct behaviour. This will be realized using a small state-
machine.

Outside the transition regions the correlation function
for the other trajectories can be switch off.

3.3 Summary of the Important Properties

The method has the following properties:

• Multiple motion/trajectories are correlated.

• Only valid transitions between the different motions
are allowed.



• Quick response time to intended motion, accurate.

• No unpredictable or undefined behaviour for the
orthosis-leg.

• Possibility to have a short ”look” into the future by
using O(t + ∆t) instead of O(t)

4 Experiments

The experiments were divided in two parts:
In the first part the reference trajectories for the right

and left leg were recorded (refer to fig. 6 for an exam-
ple). Several measurements for stand up, sit down on a
chair, walk, walk slowly and go up and down stairs were
recorded. The movement was always not hindered by any
obstacles or other external forces beside the ground reac-
tion forces.
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Figure 6. Sensor values for the left leg while going down-
stairs. The diagram is splitted in three phases: standing in
front of a staircase until 0.5s, going two stairs down until
3.5s and stop there. The curves show the movement in the
joint angles (hip q4, knee q5 and ankle q6).

During the second part of the experiments new move-
ments of the left leg were integrated into the system. The
output of the correlation for the disabled leg is compared
with the measured sensor data from the right leg during
normal gait.

In fig. 7 (walk upstairs) and fig. 8 (walk straight) the
movement of the measured angles q1 (hip), q2 (knee) and
q3 (ankle) of the right leg are shown with the corresponding
counterpart from the correlation algorithm. The transfer
from the movement of the left leg to the right works in both
cases.

When looking at fig. 7 (going upstairs) and fig. 8
(walking straight on) it can be seen that going upstairs has
two times larger changes in the angle values as walking on
flat ground, so it could be easier to track. But the results
show that the correlations work equally good for both ex-
periments.

As can be seen in Fig. 7 and 8 the correlation pro-
duces a sufficiently good relationship between the refer-
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Figure 7. The diagram shows the motion of standing in
front of a staircase until 1.5s and going two stairs up. The
curves show the measured movement in the joint angles
(hip q1, knee q2 and ankle q3) and the counterpart from the
correlation algorithm. The spikes in the hip angle data are
caused by the contact of the foot with the stair.

ence movement of the right leg and the transferred motion
for the right leg.
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Figure 8. The diagram shows a short standing position
phase from 0.5s followed by a two step walk straight on.
The curves are the measured movement of the joint angles
(hip q1, knee q2 and ankle q3) and the counterpart from the
correlation algorithm.

Fig. 9 shows a correlation run with an input trajec-
tory which has no counterpart in the references. It is walk-
ing with half speed on flat ground. Still the correlation
recognizes it as walking and the output is acceptable. The
progress through the reference trajectory is automatically
adapted through the correlation to match the pace dictated
by the left leg. There are some phase shifts up to 0.2s in
the movement of a single joint, but the overall motion is
preserved. It has to be examined what the consequences of
this phase shift are and if the gait is still stable.
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Figure 9. The diagram shows a correlation for a movement
with half velocity of the reference data. After the standing
phase at the beginning, at 1.0s a short start step followed by
two steps at 3.0s and 5.0s walked very slowly straight on.
The curves are the measured movement of the joint angles
(hip q1, knee q2 and ankle q3) and the counterpart of the
correlation algorithm. The phase shift an angle errors are
obviously larger.

5 Discussion

In section 4 we have seen that the correlation method
with the following Correlation Selection-algorithm pro-
duces output that leads to quite a good recognition of the
subjects movement and thus to a well synchronized output
for the disabled leg. But what does quite good mean? As
stated in the introduction, our main focus is to allow in-
teraction of a human with an exoskeleton robot resulting
in a stable gait and other movements by transferring the
movement of one leg to the other as good as possible. That
means, the delay between signal acquisition and delivering
of the output has to be minimized. If it appears that the
whole algorithm has a phase shift too large to allow a sta-
ble movement then the shift can be eliminated by retrieving
values from the reference trajectory from a point originat-
ing slightly in the future.

6 Conclusion and Future Work

A method for prediction of motion was presented. The pro-
posed algorithm was designed as part of the control system
for an exoskeleton. In this context the main attention was
paid to the capability of the system to identify the intended
movement of the human.

It was shown that with the presented version of the
algorithm calculation of the intended movement of the leg
is possible (see Fig. 7 in sec. 4). At the moment, the results
of the calculated movement are achieved almost at the same
time with the performed movement.

One of the next steps will be to extend the Correlation
Selection-block with a state-machine based on Markow
chains and processes for a better state-model.

Another very interesting point is the possibility to
feed the trajectory from the healthy leg to the disabled leg
and omitting pre-defined trajectories except for initial and
transition regions. This would allow adapting the stride
length, step height and other parameters easily and intu-
itively. Also the environment would not need to be similar
to the place where the trajectories have been recorded. A
lot of experiments have to be performed here to check if
this is a reasonable approach.

All experiments have been performed with healthy
persons and without activating the exoskeleton. So it is
a further step to validate the described intuitive human-to-
robot interface with handicapped persons.
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